Nukleoside

Nukleoside

Aufbau von Nukleotiden und Nukleosiden. Bei einem Nukleosid ist die 5′-OH-Gruppe der Pentose nicht mit einer Phosphatgruppe verestert. Über das C1′-Atom ist eine Base mit dieser Pentose verknüpft. Falls der Rest R eine Hydroxygruppe ist, liegt eine Ribose vor, bei einem Wasserstoffrest spricht man von einer Desoxyribose.

Nukleoside (auch Nucleoside) sind organische Moleküle, die aus einer Nukleobase und einer Pentose bestehen. In einer Zelle kommen verschiedene Nukleoside vor, die sich im Basen- oder Zuckeranteil unterscheiden. Sie enthalten im Gegensatz zu den Nukleotiden, welche die Nukleinsäuren (DNA oder RNA) aufbauen, keine Phosphatreste.

Grundtypen

Die fünf Grundtypen der Nucleoside bestehen entweder aus einer Purin- oder einer Pyrimidinbase. Wenn sie Bausteine einer RNA sind, ist die Pentose (ein Einfachzucker mit fünf C-Atomen) die Ribose, in der DNA liegt als Pentose die Desoxyribose vor. Deshalb nennt man die Bausteine der DNA genauer Desoxynukleoside, während Nukleoside im engeren Sinne die Bausteine der verschiedenen RNA-Formen sind. Die Verknüpfung von Base und Pentose erfolgt bei den Purin-Basen stets über das Stickstoffatom in Position 9, bei den Pyrimidin-Basen über das Stickstoffatom in Position 1 und das C1′-Atom des Zuckers.

Purin-Basen

Nukleobase Nukleosid Desoxynukleosid
Adenin.svg Adenosin.svg Desoxyadenosin.svg
Adenin Adenosin, A Desoxyadenosin, dA
Guanin.svg Guanosin.svg Desoxyguanosin.svg
Guanin Guanosin, G Desoxyguanosin, dG

Anmerkung: Es ist jeweils nur eine der möglichen tautomeren Strukturen dargestellt.

Pyrimidin-Basen

Nukleobase Nukleosid Desoxynukleosid
Cytosin.svg Cytidin.svg Desoxycytidin.svg
Cytosin Cytidin, C Desoxycytidin, dC
Thymin.svg 5-Methyluridin.svg Desoxythymidin.svg
Thymin Ribothymidin T[1] (=5-Methyluridin) Desoxythymidin, dT
Uracil.svg Uridin.svg Desoxyuridin.svg
Uracil Uridin, U Desoxyuridin, dU

Abwandlungen der Grundformen

Neben diesen Grundformen gibt es noch zahlreiche Modifikationen, die vor allem in den tRNAs und rRNAs zu finden sind. Diese veränderten Nukleoside entstehen in der Regel erst nach der Transkription und dienen einer Feineinstellung von Struktur, Aktivität und Spezifität der Moleküle. (Siehe dazu die Artikel tRNA, Basenpaarung und Wobble-Hypothese)

Einen Überblick über die möglichen Abwandlungen soll die folgende Auswahl geben. Zum Vergleich sind die Grundformen ebenfalls angeführt:

Pyrimidin-Nukleoside

Pyrimidin-Nukleoside (Auszug)
Name Symbol Pyrimidin-Grundstrukur R1 R2 R3 R4 R5 R6
Cytidin C Pyrimidin-Grundgerüst Ribose =O –NH2
2-Thiocytidin s2C Ribose =S –NH2
N4-Acetylcytidin ac4C Ribose =O –NH–CO–CH3
2′-O-Methylcytidin Cm 2′-O-Methyl-ribose =O –NH2
3-Methylcytidin m3C Ribose =O –CH3 –NH2
5-Methylcytidin m5C Ribose =O –NH2 –CH3
Uridin U Ribose =O =O
2-Thiouridin s2U Ribose =S =O
4-Thiouridin s4U Ribose =O =S
Pseudouridin P, Ψ, Ψrd –H =O =O Ribose
Dihydrouridin D, UH2, Uh Ribose =O =O –H,–H –H,–H
5-(Carboxyhydroxymethyl)-Uridin chm5U Ribose =O =O –CH(OH)–CO2CH3
5-Carboxymethylaminomethyl-Uridin cmnm5U Ribose =O =O –CH2–NH–CH2–CO2CH3
5-Methylaminomethyl-Uridin mnm5U Ribose =O =O –CH2–NH–CH3
5-Methoxy-carbonylmethyl-Uridin mcm5U Ribose =O =O –CH2CO2CH3
5-Methoxyuridin mo5U Ribose =O =O –O–CH3
2′-O-Methyluridin Um 2′-O-Methyl-ribose =O =O
Ribothymidin T Ribose =O =O –CH3

Purin-Nukleoside

Purin-Nukleoside (Auszug)
Name Symbol Purin-Grundstrukur R1 R2 R3 R4 R5 R6 R7 R8 R9
Adenosin A Purin-Grundgerüst –NH2 Ribose
1-Methyladenosin m1A –CH3 –NH2 Ribose
2-Methyladenosin m2A –CH3 –NH2 Ribose
N6-Methyladenosin m6A –NHCH3 Ribose
N6-Isopentenyladenosin i6A –NH–CH2–CH=C(CH3)2 Ribose
2′-O-Methyladenosin Am –NH2 2′-O-Methyl-ribose
Inosin I =O Ribose
1-Methylinosin m1I –CH3 =O Ribose
Guanosin G –NH2 =O Ribose
1-Methylguanosin m1G –CH3 –NH2 =O Ribose
N2-2-Methylguanosin m2G –NHCH3 =O Ribose
N2-2,2-Dimethylguanosin m22G –N(CH3)2 =O Ribose
7+-Methylguanosin m7G –NH2 =O –CH3 Ribose
2′-O-Methylguanosin Gm –NH2 =O 2′-O-Methyl-ribose

Hypermodifizierte Nukleoside und mit verändertem Basengrundgerüst

Queuosin Archaeosin
Queuosin (Q, obiges Bild)
β-D-Galactosyl-queuosin (galQ)
β-D-Mannosyl-queuosin (manQ)
Archaeosin (G*, kommt nur in Archaeen vor)
2′-O-Ribosyladenosinphosphat Wybutosin
2′-O-Ribosyladenosinphosphat (Ar(p), rAMP)
nur in Eukaryoten gefunden
Wybutosin (Y, yW; obiges Bild)
Wyosin (Wyo, imG)
N-Threonylcarbamoyladenosin Lysidin
N6-Threonylcarbamoyladenosin (t6A) Lysidin (k2C)

Physiologie

Wird die Hydroxyl-Gruppe des C-5 Atoms der Pentose eines Nucleosids mit Phosphat verestert, entsteht das entsprechende Nukleotid. Je nach Anzahl der Phosphat-Reste spricht man von Mono-, Di- und Triphosphaten. Aus der zentralen Bedeutung der Nukleotide ergibt sich die gleiche Bedeutung für die entsprechenden Nukleoside, da sie als Baustein der Nukleotide in diese umgewandelt werden können.

Die Nukleoside stehen durch Abspaltung der letzten Phosphatgruppe in den Nukleotiden mittels Hydrolyse, mithilfe von Nukleotidase-Enzymen in allen Lebewesen zur Verfügung. Weiterhin kann Inosin aus Adenosin mittels der AMP-Desaminase oder der Guanin-Desaminase synthetisiert werden. Xanthosin ist entsprechend nicht nur durch Hydrolyse von XMP erhältlich, sondern auch aus Guanosin mittels der Guanosin-Desaminase.

Der Abbau erfolgt über Nukleosidasen zur Nukleobase und bei Purinen über Xanthin zur Harnsäure bzw. bei Pyrimidinen zum Alanin oder zur Aminobuttersäure.

Medizinische Bedeutung

Azidothymidin
Puromycin

Nukleosid-Analoga spielen vor allem in der antiretroviralen Therapie (vgl. AIDS) eine große Rolle. Ein Reihe moderner Virostatika enthalten diese Substanzen. Wohl am besten bekannt ist Zovirax®, ein Arzneimittel, das häufig gegen das Herpes-simplex-Virus (HSV) verschrieben wird und Aciclovir als Wirkstoff enthält. Weiterhin verbreitet ist Ganciclovir, das genau wie Aciclovir ein Guanosin-Analogon ist.

Weitere Basenanaloga, die gegen Virusinfektionen verschrieben werden, sind z.B. Zidovudine (auch Azidothymidine, kurz AZT), Stavudin, Zalcitabin, Diadenosin, Idoxuridin, Fluridin und Ribavirin.

Azidothymidin (AZT, INN: Zidovudin) war der erste wirksame Arzneistoff gegen das HI-Virus. Da es am 3’-Kohlenstoff der Ribose statt einer Hydroxylgruppe eine Azidogruppe aufweist, kann hier bei der Synthese der Virus-DNA die Kette nicht mehr weiterwachsen und es entsteht ein inaktives Provirus.

Einige dieser Medikamente zeigen allerdings auch erhebliche Nebenwirkungen, weshalb sie für eine Langzeittherapie nur bedingt geeignet sind.

Puromycin

Puromycin (auch Purimycin) ist ein aus dem Bakterium Streptomyces alboniger gewonnenes Nucleosid-Antibiotikum, das die Proteinbiosynthese hemmt und gegen einige Tumore, Amöben, Trypanosomen und Würmer wirksam ist. Da es aber für den Menschen zu giftig ist, wird es nur in Experimenten der Mikrobiologie eingesetzt. Strukturell leitet es sich von Adenosin ab.

Einzelnachweise

  1. Löffler, Petrides, Heinrich: Biochemie und Pathobiochemie. 8.Auflage. Springer, Heidelberg 2007 ISBN 978-3-540-32680-9

Siehe auch

Weblinks