Harnsäure

Erweiterte Suche

Strukturformel
Harnsäure Enolform.svg $ \rightleftharpoons $ Harnsäure Ketoform.svg
Darstellung beider Grenzstrukturen der Keto-Enol-Tautomerie
Allgemeines
Name Harnsäure
Andere Namen
  • 2,6,8-Trihydroxypurin (Enolform, links)
  • Purin-2,6,8(1H,3H,9H)-trion (Ketoform, rechts)
Summenformel C5H4N4O3
CAS-Nummer 69-93-2
PubChem 1175
Kurzbeschreibung

geruchloser hellbeigefarbener Feststoff [1]

Eigenschaften
Molare Masse 168,11 g·mol−1
Aggregatzustand

fest

Dichte

1,89 g·cm−3 [1]

Schmelzpunkt

> 300 °C [1]

Löslichkeit

wenig in Wasser [1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [1]
keine GHS-Piktogramme
H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Harnsäure (klinisch geläufige Abkürzung: „HS“, jedoch nicht zu verwechseln mit Harnstoff) ist das Endprodukt des Nucleinsäureabbaus (hier: Abbau von Purinbasen) vieler Tierarten wie zum Beispiel bei Reptilien, Vögeln, Affen und Menschen. Bei Reptilien und Vögeln werden auch Aminosäuren zu Harnsäure abgebaut. Die Salze der Harnsäure heißen Urate.

Struktur

Harnsäure ist als 2,6,8-Trihydroxypurin aus einem aromatischen Sechsring aufgebaut, an den sich ein Fünfring anschließt. In der Ringstruktur substituieren vier Stickstoff-Atome die Kohlenstoff-Atome 1, 3, 7 und 9. An die Kohlenstoff-Atome 2, 6 und 8 sind Hydroxy- (Lactimform) bzw. Oxogruppen (Lactamform) gebunden.

Eigenschaften

Harnsäure bildet weiße, geruchlose Kristalle, die ab 300 °C schmelzen, und tritt in zwei tautomeren Formen auf (siehe Strukturformel). Harnsäure ist als schwache Säure nur schlecht in protoniertem Zustand (beispielsweise in Wasser), dagegen gut in basischen Medien löslich. Auch die Alkalisalze (besonders Lithium) haben eine bessere Wasserlöslichkeit.

Biologische Bedeutung

Physiologie

Der Abbau der Harnsäure (1) bei Tieren verläuft über mehrere Zwischenstufen, abhängig vom Organismus. Eine Uricase (A) katalysiert den Abbau zu Allantoin (2), welches durch eine Allantoinase (B) zu Allantoinsäure (3) hydrolysiert wird. Nach Abspaltung von Glyoxylat (4) werden zwei Moleküle Harnstoff (5) gebildet, was eine Allantoicase (C) katalysiert. Harnstoff wird schließlich durch eine Urease (D) zu Ammoniak und Kohlenstoffdioxid hydrolysiert.

Im Organismus von Hominiden, also Menschen, Schimpansen, Gorillas und Orang-Utans, entsteht Harnsäure als Abbauprodukt der Purinbasen und ist damit das Endprodukt des Purinstoffwechsels. Sie entsteht aus Hypoxanthin oder Xanthin durch das Enzym Xanthinoxidase. Harnsäure ist das endgültige Abbauprodukt der Purinnukleotide und wird zu etwa 75 % renal, also über die Niere, ausgeschieden. Daneben erfolgt auch eine Elimination über Speichel, Schweiß oder die intestinale Sekretion, also über den Darm. Die tägliche Ausscheidung beträgt bis zu 1 g.

Bei anderen Säugetieren wird Harnsäure durch das Enzym Uricase in Allantoin umgewandelt.

Obwohl Hominiden Harnsäure nicht weiter abbauen können, besitzen sie in der Niere ein effektives Rückresorptionssystem in Form des Harnsäure/Anionentauschers URAT1. Aus diesem Grund haben sie fünf- bis zehnmal höhere Harnsäure-Spiegel im Serum als andere Säugetiere.

Eine – nur Tiere betreffende – überwiegende Ausscheidung von überschüssigem Stickstoff über Harnsäure bezeichnet man als Uricotelie.

Bei dem marinen Polychaeten Platynereis dumerilii tritt die Harnsäure als Pheromon auf, welches bei der Paarung der Tiere von den Weibchen ins Wasser abgegeben wird. Dort löst es die Spermienabgabe beim Männchen aus.[2]

Physikochemie

Harnsäure weist unterschiedliche Erscheinungsformen auf, reduzierte und oxidierte. Folglich kommt es auf das Milieu um die Harnsäure an, welcher Redox-Zustand vorliegt. Danach entscheidet sich auch, ob und wie lange mit einem Reaktionspartner eine Bindung eingegangen wird.

Pathophysiologie

Unter bestimmten Bedingungen kann es zum erhöhten Anfall von Harnsäure im Organismus kommen. Der häufigste Grund ist eine unzureichende Harnsäureausscheidung über die Nieren. Wird dabei das Löslichkeitsprodukt überschritten, kann die Harnsäure in den ableitenden Harnwegen, in der Blutbahn und in bradytrophen Geweben ausfallen und abgelagert werden.

Folge dieser Hyperurikämie können Urolithe (Harnsteine), Gicht und Harnsäureinfarkte sein. Das Natriumsalz der Harnsäure, Natriumurat, spielt dabei eine wesentliche Rolle, weil es sich dann als Kristalle (Gicht) oder Steine (Nierensteine) absetzt.[3]

Bestimmte Faktoren erhöhen die Harnsäureproduktion oder die Harnsäuremenge im Organismus:

Die Bestimmung der Harnsäurekonzentration ist bei einer Tumortherapie mit Zytostatika oder ionisierenden Strahlen von großer Bedeutung. Werden größere Tumor- und Zellmassen zerstört, so steigt der Harnsäure-Gehalt im Blut rasch an, so dass es zu schweren Nierenschädigungen kommen kann. Durch regelmäßige Kontrolle muss die Tumortherapie so gesteuert werden, dass kritische Harnsäurespiegel nicht erreicht werden.

Ethanol hemmt die Harnsäureausscheidung.

In einer großen epidemiologischen Untersuchung waren erhöhte Harnsäure-Spiegel in der Normalbevölkerung ein moderater Risikofaktor, im weiteren Verlauf an einer chronischen Nierenkrankheit zu erkranken.[4]

Metabolisches Syndrom

Der Begründer der Pathologie Giovanni Battista Morgagni (1682–1771; Professor in Padua) erkannte bereits im 18. Jahrhundert den Zusammenhang zwischen Obesitas, Diabetes mellitus, Bluthochdruck und Gicht. In der „Erstbeschreibung“ des Metabolischen Syndroms (MetS) durch den Schweden E. Kylin 1923 wird neben der Erhöhung von Körpergewicht, Blutfetten und Blutzucker noch die Hyperurikämie erwähnt. In den aktuell gültigen Definitionen z.B. der International Diabetes Foundation (IDF) fehlt die Hyperurikämie. Eine zunehmende Zahl von Wissenschaftlern nimmt sie aber wieder in ihre Definition des MetS auf.

Nachweisreaktionen

Der Harnsäuregehalt lässt sich im Enzymtest durch Photometrie unter Verwendung der Uratoxidase und einer Absorption im Bereich von 290 nm messen.

Ein weiterer gebräuchlicher Nachweis erfolgt über das Eindampfen der Harnsäure mit konzentrierter Salpetersäure und Versetzen mit Ammoniak-Lösung in der Murexid-Probe.

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 Datenblatt Harnsäure bei Carl Roth, abgerufen am 18. Dezember 2012.
  2.  Erich Zeeck et al.: Uric acid: The sperm-release pheromone of the marine polychaete Platynereis dumerilii.. In: J Chem Ecol. Nr. 24, 1998, S. 13-22 (Abstract).
  3. Ursula Gresser: Diagnose und Therapie der Gicht, in: Dtsch Arztebl 2003, 100(44): A-2862 / B-2379 / C-2235.
  4.  Daniel E. Weiner et al.: Uric Acid and Incident Kidney Disease in the Community. In: J Am Soc Nephrol. Nr. 19, 2008, S. 1204-1211 (Abstract).

Weblinks

Wiktionary Wiktionary: Harnsäure – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

cosmos-indirekt.de: News der letzten Tage