Strontiumbromid

Erweiterte Suche

Kristallstruktur
Kristallstruktur von Strontiumbromid
__ Sr2+     __ Br
Allgemeines
Name Strontiumbromid
Verhältnisformel SrBr2
CAS-Nummer
  • 10476-81-0 (Reinsubstanz)
  • 7789-53-9 (Hexahydrat)
PubChem 25302
Kurzbeschreibung

farbloser Feststoff[1]

Eigenschaften
Molare Masse
  • 247,44 g·mol−1 (Reinsubstanz)
  • 355,53 g·mol−1 (Hexahydrat)
Aggregatzustand

fest

Dichte
  • 4,216 g·cm−3[2] (Reinsubstanz)
  • 2,386 g·cm−3 [3] (Hexahydrat)
Schmelzpunkt

643 °C[2]

Siedepunkt

2146 °C[4]

Löslichkeit
  • gut löslich in Wasser: 1070 g·l−1 (25 °C)[5]
  • löslich in Alkohol, unlöslich in Ether[5]
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [4]
07 – Achtung

Achtung

H- und P-Sätze H: 315-319-335
P: 261-​305+351+338 [4]
EU-Gefahrstoffkennzeichnung [6][2]
Reizend
Reizend
(Xi)
R- und S-Sätze R: 36/37/38
S: 26-36
LD50

1 g·kg−1 (Ratte, i.v.)[7]

Thermodynamische Eigenschaften
ΔHf0

10,12 kJ·mol−1[5]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Strontiumbromid ist das Strontiumsalz der Bromwasserstoffsäure.

Herstellung

Strontiumbromid kann durch Salzbildungsreaktion aus Strontiumhydroxid und Bromwasserstoff hergestellt werden.

$ \mathrm{Sr(OH)_2 + 2\ HBr \longrightarrow SrBr_2 + 2 H_2O} $

Auch aus Strontiumcarbonat und Strontiumcarbid ist die Synthese möglich.[8]

$ \mathrm{SrCO_3 + 2\ HBr \longrightarrow SrBr_2 + H_2O +CO_2 \uparrow} $

Eigenschaften

Strontiumbromid ist gut wasserlöslich, mit steigender Temperatur steigt auch die Löslichkeit: bei 0 °C lösen sich 852 g, bei 25 °C 1070 g und bei 100 °C 2225 g Strontiumbromid in 1 Liter Wasser.[5] Es tritt als Hexahydrat SrBr2 · 6 H2O auf, das sich bei 89 °C unter Kristallwasserabgabe in das Dihydrat SrBr2 · 2 H2O und schließlich bei 180 °C in das Anhydrat umwandelt.[5] Strontiumbromid ist in Ethanol löslich, aus diesen Lösungen scheiden sich Kristalle mit der Formel 2 SrBr2 · 5 C2H5OH ab.[8]

Wasserfreies Strontiumbromid kristallisiert im orthorhombischen Kristallsystem in der Raumgruppe Pnma mit den Gitterparametern a = 920 pm, b = 1142 pm und c = 430 pm. In der Elementarzelle befinden sich vier Formeleinheiten.[3]

Das Hexahydrat kristallisiert im trigonalen Kristallsystem in der Raumgruppe P321 und den Gitterparametern a = 822,8 pm und c = 416,4 pm. In der Elementarzelle befindet sich eine Formeleinheit.[3]

Verwendung

Strontiumbromid wirkt wie auch andere Salze der Bromwasserstoffsäure (Lithiumbromid, Kaliumbromid) zentraldämpfend. Die Verwendung als Sedativ ist heute obsolet.[9]

Einzelnachweise

  1. CRC Handbook of Chemistry and Physics, CRC Press, LLC 2005.
  2. 2,0 2,1 2,2 Datenblatt Strontiumbromid bei AlfaAesar, abgerufen am 7. Juni 2010 (JavaScript erforderlich).
  3. 3,0 3,1 3,2 Jean D'Ans, Ellen Lax: Taschenbuch für Chemiker und Physiker. 3. Elemente, anorganische Verbindungen und Materialien, Minerale, Band 3. 4. Auflage, Springer, 1997, ISBN 978-3-5406-0035-0, S. 742–743 (eingeschränkte Vorschau in der Google Buchsuche).
  4. 4,0 4,1 4,2 Datenblatt Strontium bromide bei Sigma-Aldrich, abgerufen am 23. April 2011.
  5. 5,0 5,1 5,2 5,3 5,4 Dale L. Perry, Sidney L. Phillips: Handbook of Inorganic Compounds. CRC Press, 1995, ISBN 978-0-8493-8671-8, S. 387 (eingeschränkte Vorschau in der Google Buchsuche).
  6. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  7. Vorlage:Strem
  8. 8,0 8,1 R. Abegg, F. Auerbach: Handbuch der anorganischen Chemie, Bd. 2, Verlag S. Hirzel, 1908. S. 214–216; Volltext
  9. C. Uferer, T. Hückel: Ausgewählte Standardrezepturen im NRF, in: Pharmazeutische Zeitung, Ausgabe 11/2000.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

17.01.2022
Quantenphysik | Teilchenphysik
Ladungsradien als Prüfstein neuester Kernmodelle
Ein internationales Forschungsprojekt hat die modernen Möglichkeiten der Erzeugung radioaktiver Isotope genutzt, um erstmals die Ladungsradien entlang einer Reihe kurzlebiger Nickelisotope zu bestimmen.
13.01.2022
Sonnensysteme | Planeten | Elektrodynamik
Sauerstoff-Ionen in Jupiters innersten Strahlungsgürteln
In den inneren Strahlungsgürteln des Jupiters finden Forscher hochenergetische Sauerstoff- und Schwefel-Ionen – und eine bisher unbekannte Ionenquelle.
12.01.2022
Schwarze Löcher | Relativitätstheorie
Die Suche nach einem kosmischen Gravitationswellenhintergrund
Ein internationales Team von Astronomen gibt die Ergebnisse einer umfassenden Suche nach einem niederfrequenten Gravitationswellenhintergrund bekannt.
11.01.2022
Exoplaneten
Ein rugbyballförmiger Exoplanet
Mithilfe des Weltraumteleskops CHEOPS konnte ein internationales Team von Forschenden zum ersten Mal die Verformung eines Exoplaneten nachweisen.
07.01.2022
Optik | Quantenoptik | Wellenlehre
Aufbruch in neue Frequenzbereiche
Ein internationales Team von Physikern hat eine Messmethode zur Beobachtung licht-induzierter Vorgänge in Festkörpern erweitert.
06.01.2022
Elektrodynamik | Quantenphysik | Teilchenphysik
Kernfusion durch künstliche Blitze
Gepulste elektrische Felder, die zum Beispiel durch Blitzeinschläge verursacht werden, machen sich als Spannungsspitzen bemerkbar und stellen eine zerstörerische Gefahr für elektronische Bauteile dar.
05.01.2022
Elektrodynamik | Teilchenphysik
Materie/Antimaterie-Symmetrie und Antimaterie-Uhr auf einmal getestet
Die BASE-Kollaboration am CERN berichtet über den weltweit genauesten Vergleich zwischen Protonen und Antiprotonen: Die Verhältnisse von Ladung zu Masse von Antiprotonen und Protonen sind auf elf Stellen identisch.
04.01.2022
Milchstraße
Orions Feuerstelle: Ein neues Bild des Flammennebels
Auf diesem neuen Bild der Europäischen Südsternwarte (ESO) bietet der Orion ein spektakuläres Feuerwerk zur Einstimmung auf die Festtage und das neue Jahr.
03.01.2022
Sterne | Elektrodynamik | Plasmaphysik
Die Sonne ins Labor holen
Warum die Sonnenkorona Temperaturen von mehreren Millionen Grad Celsius erreicht, ist eines der großen Rätsel der Sonnenphysik.
30.12.2021
Sonnensysteme | Planeten
Rekonstruktion kosmischer Geschichte kann Eigenschaften von Merkur, Venus, Erde und Mars erklären
Astronomen ist es gelungen, die Eigenschaften der inneren Planeten unseres Sonnensystems aus unserer kosmischen Geschichte heraus zu erklären: durch Ringe in der Scheibe aus Gas und Staub, in der die Planeten entstanden sind.