Strontiumfluorid

Erweiterte Suche

Kristallstruktur
Struktur von Strontiumfluorid
__ Sr2+     __ F
Kristallsystem

kubisch

Raumgruppe

$ Fm \bar3 m $

Allgemeines
Name Strontiumfluorid
Andere Namen
  • Strontium(II)-fluorid
  • Strontiumdifluorid
Verhältnisformel SrF2
CAS-Nummer 7783-48-4
PubChem 82210
Kurzbeschreibung

farbloser Feststoff[1]

Eigenschaften
Molare Masse 125,62 g·mol−1
Aggregatzustand

fest

Dichte

4,24 g·cm−3[1]

Schmelzpunkt

1473 °C[2]

Siedepunkt

2489 °C [1]

Löslichkeit

sehr schlecht in Wasser (0,12 g·l−1 bei 25 °C)[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [3]
07 – Achtung

Achtung

H- und P-Sätze H: 315-319-335
P: 261-​305+351+338 [3]
EU-Gefahrstoffkennzeichnung [4][1]
Gesundheitsschädlich
Gesundheits-
schädlich
(Xn)
R- und S-Sätze R: 20/22
S: 9-36
LD50

10600 mg·kg−1 (Ratte, oral)[1]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche nicht möglich

Strontiumfluorid (auch Strontium(II)-fluorid) ist das Fluorid des Erdalkalimetalls Strontium. Es ist ein weißer, kristalliner, spröder Feststoff, der bei 1473 °C flüssig wird und bei 2489 °C schließlich verdampft.

Vorkommen

Die bisher einzige bekannte, natürlich vorkommende Verbindung ist das 2009 als Mineral anerkannte Strontiofluorit, das bisher nur an seiner Typlokalität Koashva in den russischen Chibinen (Halbinsel Kola) gefunden wurde.[5]

Darstellung

Strontiumfluorid kann durch die Reaktion von Strontiumchlorid (SrCl2) mit Fluor dargestellt werden.

$ \mathrm{SrCl_2\ +\ F_2\ \rightarrow \ SrF_2\ +\ Cl_2 } $

Alternativ erfolgt die Gewinnung durch Reaktion von Fluorwasserstoffsäure mit Strontiumcarbonat (SrCO3).

$ \mathrm{SrCO_3\ +\ 2\ HF\ \rightarrow \ SrF_2\ +\ H_2CO_3 } $

Eigenschaften

Der Feststoff kristallisiert im kubischen Kristallsystem in der Fluoritstruktur. Der Gitterparameter beträgt a = 579,96 pm, der Brechungsindex der Kristalle beträgt 1,439 bei 580 nm.[6] In der Dampfphase beträgt der Bindungswinkel zwischen F–Sr–F ungefähr 120°, was eine Ausnahme zum VSEPR-Modell darstellt, welches eine lineare Struktur vorhersagen würde. Es wurden Berechnungen herangezogen, die zeigen wollen, dass Einflüsse der Schale, die direkt unterhalb der Valenzschale liegt, diesen Effekt verursachen. Eine andere Vermutung ist, dass die Polarisierung des Elektronenkerns des Strontiumatoms eine annähernd tetraedische Ladungsverteilung verursacht, welche mit der Sr–F-Bindung agiert und so zur Einstellung dieses Winkels führt.[7]

Strontiumfluorid ist mit 0,12 g/l nahezu unlöslich in Wasser.[8] Es reizt sowohl Haut als auch die Augen und ist gesundheitsschädlich beim Einatmen oder Verschlucken.

Bei erhöhten Temperaturen fungiert Strontiumfluorid als Ionenleiter, kann also über Ionen elektrische Ladungen transportieren und leitet somit den elektrischen Strom.[9]

Die Verbindung ist im Lichtspektrum, also dem sichtbaren Anteil des elektromagnetischen Spektrums und ein wenig darüber hinaus lichtdurchlässig. Seine optischen Eigenschaften liegen damit zwischen denen von Calciumfluorid und Bariumfluorid.[10] Dies macht es interessant für Anwendungen im optischen Bereich (siehe Verwendung).

Verwendung

Strontiumfluorid wird als Beschichtung für Linsen eingesetzt um die Reflexe zu reduzieren und die Transmission zu erhöhen. Es wird außerdem als Kristall in Thermolumineszenzdosimetern verwendet. Weiterhin findet es Anwendung als Träger für das Isotop 90Sr, welches in Radionuklidbatterien eingesetzt wird.

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 1,5 Datenblatt Strontiumfluorid bei AlfaAesar, abgerufen am 15. August 2010 (JavaScript erforderlich).
  2. H. Kojima, S. G. Whiteway, C. R. Masson: Melting points of inorganic fluorides. In: Canadian Journal of Chemistry. 1968, 46, 18, S. 2968–2971; doi:10.1139/v68-494.
  3. 3,0 3,1 Datenblatt Strontium fluoride bei Sigma-Aldrich, abgerufen am 23. April 2011.
  4. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  5. Mineralienatlas:Strontiofluorit (IMA 2009-014)
  6. Eintrag bei www.korth.de
  7. Ian Bytheway, Ronald J. Gillespie, Ting-Hua Tang, Richard F. W. Bader: „Core Distortions and Geometries of the Difluorides and Dihydrides of Ca, Sr, and Ba“, in: Inorg. Chem., 1995, 34 (9), S. 2407–2414; doi:10.1021/ic00113a023.
  8. Datenblatt Strontiumfluorid bei AlfaAesar, abgerufen am 15. Dezember 2010 (JavaScript erforderlich).
  9. Newmet Homepage (Archivlink wegen Unerreichbarkeit)
  10. http://www.crystran.co.uk/products.asp?productid=155

Weblinks

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?