Arginin

Erweiterte Suche

Strukturformel
Strukturformel von L-Arginin
L-Arginin
Allgemeines
Name Arginin
Andere Namen
Summenformel C6H14N4O2
CAS-Nummer
  • 74-79-3 (L-Enantiomer)
  • 157-06-2 (D-Enantiomer)
PubChem 6322
ATC-Code
DrugBank DB00125
Kurzbeschreibung

weißer Feststoff[1]

Eigenschaften
Molare Masse 174,20 g·mol−1
Aggregatzustand

fest

Dichte

0,7 g·cm−3[1]

Schmelzpunkt

238 °C[1]

pKs-Wert
  • COOH: 2,0[2]
  • NH2: 9,0[2]
  • Guanidin-Gruppe: 12,1 (stark basisch)[2]
Löslichkeit

gut in Wasser (150 g·l−1 bei 20 °C)[1]

Sicherheitshinweise
Bitte die eingeschränkte Gültigkeit der Gefahrstoffkennzeichnung bei Arzneimitteln beachten
GHS-Gefahrstoffkennzeichnung [3]
07 – Achtung

Achtung

H- und P-Sätze H: 319
P: 305+351+338 [3]
EU-Gefahrstoffkennzeichnung [4][1]

Xi
Reizend
R- und S-Sätze R: 36
S: 26
LD50

5110 mg·kg−1 (Ratte, peroral)[1]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

L-Arginin, abgekürzt Arg oder R, ist eine proteinogene α-Aminosäure. Für den Menschen ist sie semiessentiell. Der Name leitet sich vom lateinischen Wort argentum (Silber) ab, da die Aminosäure zuerst als Silber-Salz isoliert werden konnte. Diese Aminosäure hat den höchsten Masseanteil an Stickstoff von allen proteinogenen Aminosäuren. Im Dreibuchstabencode wird L-Arginin mit Arg und im Einbuchstabencode als R abgekürzt.

Vorkommen

L-Arginin ist weit verbreitet. Die folgenden Beispiele geben einen Überblick über Arginingehalte und beziehen sich jeweils auf 100 g des Lebensmittels, zusätzlich ist der prozentuale Anteil von gebundenem Arginin am Gesamtprotein angegeben.[5]

Lebensmittel Gesamtprotein Arginin Anteil
Schweinefleisch, roh 20,95 g 1394 mg 0 6,7 %
Hähnchenbrustfilet, roh 21,23 g 1436 mg 0 6,8 %
Lachs, roh 20,42 g 1221 mg 0 6,0 %
Hühnerei 12,57 g 0 820 mg 0 6,5 %
Kuhmilch, 3,7 % Fett 0 3,28 g 0 119 mg 0 3,6 %
Pinienkerne 13,69 g 2413 mg 17,6 %
Walnüsse 15,23 g 2278 mg 15,0 %
Kürbiskerne 30,23 g 5353 mg 17,7 %
Erdnuss, geröstet 23,68 g 2832 mg 11,9 %
Weizen-Vollkornmehl 13,70 g 0 642 mg 0 4,7 %
Mais-Vollkornmehl 0 6,93 g 0 345 mg 0 5,0 %
Reis, ungeschält 0 7,94 g 0 602 mg 0 7,6 %
Buchweizenkörner 13,25 g 0 982 mg 0 7,4 %
Erbsen, getrocknet 24,55 g 2188 mg 0 8,9 %

Alle diese Nahrungsmittel enthalten praktisch ausschließlich chemisch gebundenes L-Arginin als Proteinbestandteil, jedoch kein freies L-Arginin.

Eigenschaften

Arginin ist eine α-Aminosäure mit einer Guanidin-Funktionalität in der Seitenkette. Gemeinsam mit L-Lysin und L-Histidin gehört L-Arginin in die Gruppe der „basischen“ Aminosäuren oder Hexonbasen. Diese besitzen eine basische Gruppe, hier eine Guanidinogruppe, die im Neutralbereich stets protoniert (positiv geladen) ist. Arginin ist gut in Wasser löslich und reagiert (durch Bindung von Protonen) alkalisch. Die Guanidin-Gruppe ist sowohl im sauren und neutralen, als auch im schwach basischen Milieu protoniert und trägt eine positive Ladung, die zwischen den Aminogruppen delokalisiert ist. Proteine, die L-Arginin enthalten, werden durch diese Ladung hydrophiler, also wasserlöslicher.

Arginin liegt überwiegend als „inneres Salz“ bzw. Zwitterion vor, dessen Bildung dadurch zu erklären ist, dass das Proton der Carboxygruppe zum Guanidino-Rest wandert, der stärker basisch als die α-Aminogruppe ist:[6]

Zwitterionen von L-Arginin mit dem mesomeriestabilisierten Guanido-Kation

Im elektrischen Feld wandert das Zwitterion nicht, da es als Ganzes ungeladen ist. Genaugenommen ist dies am isoelektrischen Punkt (bei einem bestimmten pH-Wert, hier 11,2[7]) der Fall, bei dem das Arginin auch seine geringste Löslichkeit in Wasser besitzt.

Freies L-Arginin hat einen bitteren Geschmack.[8]

Stereochemie

In den Proteinen kommt ausschließlich L-Arginin [Synonym: (S)-Arginin] peptidisch gebunden vor. Enantiomer dazu ist das spiegelbildliche D-Arginin [Synonym: (R)-Arginin], das in Proteinen nicht vorkommt. Racemisches DL-Arginin [Synonym: (RS)-Arginin] besitzt geringe Bedeutung.

Strukturformel von L-Arginin
Strukturformel von D-Arginin
L-Arginin (oben) bzw. D-Arginin (unten)

Biosynthese

Im Harnstoffzyklus entsteht L-Arginin aus Carbamoylphosphat, L-Ornithin und L-Aspartat.

Funktionen

L-Arginin ist eine Quelle energiereicher Stickstoff-Phosphat-Verbindungen in Organismen und ist an zahlreichen biologischen Funktionen beteiligt. Es dient in Keimlingen und Speicherzellen als Stickstoff-Reservoir. L-Arginin ist ein Metabolit des Harnstoffzyklus, in dem der Ammoniak, der beim Abbau von Stickstoffverbindungen (z. B. Aminosäuren) entsteht, in Harnstoff umgewandelt wird. L-Arginin ist die alleinige Vorstufe von Stickstoffmonoxid (NO), einem der kleinsten Botenstoffe im menschlichen Körper. Durch Stickstoffmonoxid (NO)-Synthase entsteht aus L-Arginin der Endothelium-derived relaxing Factor (EDRF), der als NO identifiziert wurde. EDRF führt physiologisch zu einer Gefäßerweiterung, indem das NO in die Muskelschicht der Gefäße diffundiert. Es aktiviert dort die lösliche Guanylatcyclase und führt so zur Erschlaffung der glatten Muskulatur und zum Nachlassen des Gefäßtonus. Studien zeigen, dass Arginin über diese Gefäßerweiterung einen erhöhten Blutdruck signifikant senken kann.[9]

Aufgrund der gefäßerweiternden Funktion findet Arginin im Bodybuilding als sogenanntes „Pump-Supplement“ Anwendung, ohne dass diese biologische Wirkung bewiesen ist. Weiterhin führt das NO zur Hemmung der Thrombozytenaggregation und -adhäsion. Dadurch wird die Bereitschaft für thrombotische Veränderungen an Gefäßplaque-Rupturen herabgesetzt, dem häufigsten Grund für cerebrale Insulte. Es wird angenommen, dass Arginin die unterdrückte Immunantwort bei schweren Verletzungen, Mangelernährung, Sepsis und nach Operationen positiv beeinflussen kann. Bei zusätzlicher Gabe wird eine verbesserte zelluläre Immunantwort, eine Abnahme verletzungsbedingter Funktionsstörungen der T-Zellen und eine verstärkte Phagozytose beobachtet. Zusätzlich wird die Ausbildung der endothelialen Dysfunktion (gestörten Gefäßfunktion) verhindert.[10][11]

1998 erhielten die Wissenschaftler Robert F. Furchgott, Louis J. Ignarro und Ferid Murad für die Erforschung des Zusammenhangs von Arginin und NO den Nobelpreis für Medizin.

Bedarf

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.

Der Mensch kann innerhalb des Harnstoffzyklus Arginin selbst synthetisieren, allerdings sind die entstehenden Mengen nicht ausreichend, um den Bedarf vor allem bei heranwachsenden Menschen vollständig zu decken. Daher ist L-Arginin für Kinder essentiell. Aber auch bei Erwachsenen wird der Bedarf an L-Arginin durch die körpereigene Produktion oft nicht ausreichend abgedeckt. Besonders in der Wachstumsphase, durch Stress, bei diversen Krankheiten (z. B. Arteriosklerose, Bluthochdruck, erektile Dysfunktion, Gefäßerkrankungen) oder nach Unfällen übersteigt der Bedarf an Arginin die vom menschlichen Organismus produzierte Menge.

Bei einer Proteinzufuhr von etwa 70–90 g/Tag ergibt sich eine rechnerische tägliche Argininzufuhr von ca. 2–5 g/Tag.[12]

Medizinische Verwendung

L-Arginin wird zur Behandlung einer schweren metabolischen Alkalose verwendet. In der Kinderheilkunde ist L-Arginin auch zur Behandlung eines durch eine schwere angeborene Stoffwechselstörung bedingten erhöhten Ammoniakgehaltes im Blut (Hyperammonämie) angezeigt. Diagnostisch wird L-Arginin zur Abklärung eines Wachstumshormonmangels bei Minderwuchs eingesetzt.

Als (semi)essentielle Aminosäure ist L-Arginin obligatorischer Bestandteil einer parenteralen Ernährung. In Elektrolyt-Konzentraten zum Zusatz zu Infusionslösungen und in peroralen Diätetika wird L-Arginin ebenfalls eingesetzt.[13]

Pharmazeutisch verwendet wird meistens das L-Arginin-Hydrochlorid.

Supplemente

Arginin wird zur Supplementierung bei unzureichender Zufuhr oder erhöhtem Bedarf als diätetisches Lebensmittel, insbesondere als Lebensmittel für besondere medizinische Zwecke, gemäß Diätverordnung für verschiedene Krankheitszustände wie erektile Dysfunktion, Arteriosklerose im Frühstadium, endotheliale Dysfunktion und Bluthochdruck vermarktet.[14]

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 1,5 Datenblatt Arginin bei Carl Roth, abgerufen am 13. März 2010.
  2. 2,0 2,1 2,2 Teresa, K.-J. et al.: Nickel Ion Complexes of Amino Acids and Peptides. In: Metal Ions in Life Sciences Band 2: Nickel and Its Surprising Impact in Nature; John Wiley & Sons 2007; ISBN 978-0-470-01671-8; S. 67; doi:10.1002/9780470028131.ch3.
  3. 3,0 3,1 Eintrag zu CAS-Nr. 74-79-3 in der GESTIS-Stoffdatenbank des IFA, abgerufen am 9. März 2011 (JavaScript erforderlich)
  4. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  5. Nährstoffdatenbank des US-Landwirtschaftsministeriums, 22. Ausgabe.
  6. Hans-Dieter Jakubke und Hans Jeschkeit: Aminosäuren, Peptide, Proteine, Verlag Chemie, 1982, S. 42, ISBN 3-527-25892-2.
  7. Norman L. Allinger, Michael P. Cava, Don C. de Jongh, Carl R. Johnson, Norman A. Lebel und Calvin L. Stevens: Organische Chemie, Verlag Walther de Gruyter, 1980, S. 1129, ISBN 3-11-004594-X.
  8. W. Ternes, A. Täufel, L. Tunger, M. Zobel (Hrsg.): Lebensmittel-Lexikon. 4. Auflage, Behr’s Verlag, Hamburg 2005; S. 62–63; ISBN 3-89947-165-2.
  9. Dong JY, Qin LQ, Zhang Z, Zhao Y, Wang J, Arigoni F, Zhang W: Effect of oral L-arginine supplementation on blood pressure: A meta-analysis of randomized, double-blind, placebo-controlled trials. In: Am Heart, 2011 J 162: 959-965.
  10. Landmesser, U. et al. (2004): Endothelial function: a critical determinant in atherosclerosis? In: Circulation, 109 (21 Suppl 1); II27–33; PMID 15173060; PDF (freier Volltextzugriff, engl.).
  11. P. Fürst, H-K. Biesalki et. al.: Ernährungsmedizin, S. 94–95, Thieme-Verlag, Stuttgart 2004.
  12. A. Hahn: Nahrungsergänzungsmittel und ergänzende bilanzierte Diäten. Stuttgart: Wissenschaftliche Verlagsgesellschaft mbH Stuttgart, 2006; S. 295.
  13. S. Ebel und H. J. Roth (Herausgeber): Lexikon der Pharmazie, Georg Thieme Verlag, 1987, S. 56, ISBN 3-13-672201-9.
  14. Scientific Opinion on the substantiation of health claims related to L-arginine

Weblinks

Wiktionary Wiktionary: Arginin – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.