Stern-Volmer-Gleichung
- Seiten mit Math-Fehlern
- Seiten mit Math-Renderingfehlern
- Spektroskopie
Die Stern-Volmer-Gleichung beschreibt in der Physikalischen Chemie die Abhängigkeit der Quantenausbeute bzw. der Intensität der Fluoreszenz eines fluoreszierenden Farbstoffes von der Konzentration von Stoffen, die die Fluoreszenz löschen (sogenannte Quencher). Mit der Stern-Volmer-Gleichung kann unter bestimmten Umständen auch die Abhängigkeit der Lebensdauer des angeregten Zustandes eines fluoreszierenden Farbstoffes von der Konzentration des Quenchers beschrieben werden.
Die Gleichung entstammt einer Zusammenarbeit der Physikochemiker Otto Stern und Max Volmer am physikochemischen Institut der Berliner Universität bei Walther Nernst. Die Stern-Volmer-Gleichung wurde von Stern und Volmer 1919 in dem Artikel „Über die Abklingungszeit der Fluoreszenz", der in dem wissenschaftlichen Journal Physikalische Zeitschrift erschien, zum ersten Mal beschrieben[1].
Die Gleichung lautet in ihrer klassischen Form:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{F_0}{F} = 1 + K_{SV} \cdot [\mathrm{Q}]
Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_0 die Fluoreszenzintensität des fluoreszierenden Farbstoffes (des Fluorophors) in Abwesenheit des Quenchers, $ F $ die Fluroreszenzintensität desselben in Anwesenheit des Quenchers, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{[Q]} die Konzentration des Quenchers und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_{SV} die Stern-Volmer-Konstante.
Häufig wird folgende Schreibweise der Stern-Volmer-Gleichung bevorzugt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{F_0}{F} -1 = K_{SV} \cdot \mathrm{[Q]}
Wird der Term Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (F_0/F) -1 gegen die Konzentration Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{[Q]} aufgetragen, so ergibt sich ein einfacher linearer Zusammenhang. Der Anstieg der Geraden ist dann die Stern-Volmer-Konstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_{SV} .
Eine wichtige Voraussetzung für die Gültigkeit der Stern-Volmer-Gleichung ist die gleiche Erreichbarkeit aller Moleküle des Fluorophors durch den Quencher: für alle Moleküle des Fluorophors muss die gleiche Stern-Volmer-Konstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_{SV} gelten. Ist ein Teil der Moleküle des Fluorophors für den Quencher besser bzw. schlechter erreichbar - und damit deren Fluoreszenz besser bzw. schlechter löschbar - so ist die Stern-Volmer-Gleichung in der obigen Form nicht anwendbar. Sie muss dann abgewandelt werden.
Eine andere wichtige Voraussetzung der Stern-Volmer-Gleichung ist, dass der Quencher die Fluoreszenz nur auf eine Weise löschen darf. Löscht der Quencher die Fluoreszenz auf verschiedene Weisen, so ist die Stern-Volmer-Gleichung in der obigen Form nicht anwendbar. Sie muss dann abgewandelt werden.
Die Stern-Volmer-Konstante bei dynamischer Fluoreszenzlöschung
Bei der dynamischen Fluoreszenzlöschung - auch als dynamic quenching oder dynamisches Quenching bezeichnet - kollidiert der Quencher mit dem Fluorophor. Befindet sich das Fluorophor bei der Kollision in seinem angeregten Zustand, so geht das Fluorophor aus dem angeregten Zustand in seinen Grundzustand zurück, ohne dabei Photonen zu emittieren. Daher wird die dynamische Fluoreszenzlöschung auch als Stoßlöschung bezeichnet. Die dynamische Fluoreszenzlöschung beruht also darauf, dass die Energie des angeregten Fluorophors strahlungslos abgegeben wird.
Die Stern-Volmer-Konstante lautet für die dynamische Fluoreszenzlöschung:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_{SV} = K_d = \tau_0\,k_q
Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_q die bimolekulare Quenchingkonstante und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau_0 die Lebensdauer des angeregten Zustandes des Fluorophors in Abwesenheit des Quenchers.
Die bimolekulare Quenchingkonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_q kann aus der Lebenszeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau_0 des ungestörten Fluorophors ($ \mathrm {[Q]} $=0), und der Lebenszeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau des Fluorophors für die Quencherkonzentration Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{[Q]} direkt berechnet werden:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_q = \frac{1}{\mathrm{[Q]}} \cdot \left( \frac{1}{\tau} - \frac{1}{\tau_0} \right)
Die bimolekulare Quenchingkonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_q wird auch dargestellt als:
- $ k_{q}=\gamma \cdot k_{0} $
Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_0 der bimolekulare Ratenkoeffizient für Kollisionen: dieser Koeffizient gibt an, mit welcher Wahrscheinlichkeit das Fluorophormolekül und das Quenchermolekül miteinander kollidieren. Der bimolekulare Ratenkoeffizient Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_0 kann mit der Smoluchowski-Gleichung berechnet werden. Der Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma ist die Quencheffizienz und gibt an, mit welcher Wahrscheinlichkeit der Quencher das angeregte Fluorophor bei einer Kollision löscht. Die Quencheffizienz kann Werte zwischen null und eins annehmen: Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma gleich null, so wird das angeregte Fluorophor durch den Quencher nie gelöscht, egal wie häufig dieser das Fluorophor trifft. Der Quencher ist im Sinne der dynamischen Fluoroeszenzlöschung dann gar kein Quencher. Ist die Quencheffizienz gleich eins, so löscht der Quencher das angeregte Fluorophor bei jedem sich ereignendem Stoß.
Für die dynamische Fluoreszenzlöschung ist die Abnahme der Lebensdauer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau des angeregten Zustandes in der Anwesenheit des Quenchers charakteristisch. Je langlebiger der angeregte Zustand ist, desto wahrscheinlicher wird eine Kollision zwischen dem Quencher und dem angeregten Fluorophor und damit auch dessen Löschung. Für die dynamische Fluoreszenzlöschung gilt daher folgendes Verhältnis:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{F_0}{F} = \frac{\tau_0}{\tau} = 1 + K_d \cdot \mathrm{[Q]}
Für die gleiche Konzentration des Quenchers wird bei der dynamischen Fluoreszenzlöschung bei steigender Temperatur der Wert für die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_d prinzipiell größer, d. h. der Quencher löscht bei höherer Temperatur stärker als bei niedrigerer Temperatur: die Diffusionsgeschwindigkeit des Quenchers - und damit auch der bimolekulare Ratenkoeffizient $ k_{0} $ - nimmt bei steigender Temperatur zu, wodurch die Anzahl der Stöße mit dem Fluorophor, und damit die Anzahl der Löschvorgänge, ebenfalls zunimmt. Dies ist ein wichtiges Unterscheidungsmerkmal zwischen dynamischer und statischer Fluoreszenzlöschung, da es sich bei der statischen Fluoreszenzlöschung prinzipiell andersherum verhält.
Das bisherige galt für eine homogene Fluorophorpopulation. Liegt mehr als eine Fluorophorpopulation vor – wenn also mehrere Fluophore vorhanden sind bzw. wenn sich die Mitglieder einer Fluorophor-Spezies in unterschiedlichen chemischen Umgebungen aufhalten und sich dadurch in ihrem Fluoreszenzverhalten signifikant, d.h. messbar, unterscheiden - dann lautet die Stern-Volmer-Gleichung für die dynamische Fluoreszenzlöschung für eine heterogene Fluorophorpopulation:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{F}{F_0} = \sum_{i=1}^{n} \frac{f_i}{1+K_{d,\, i} \, \mathrm{[Q]}}
Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_{d,\, i} die Stern-Volmer-Konstante für das dynamische Quenching der iten Fluorophorpopulation und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f_i ist der Anteil der iten Fluorophorpopulation an der Gesamtintensität der Fluoreszenz:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f_i = \frac{F_i}{\sum_{i=1}^{n} F_i}
Dabei ist $ F_{i} $ die Fluoreszenzintensität der iten Fluorophorpopulation.
Herleitung
Das Fluorophor F geht durch die Absorption eines Photons - symbolisiert durch den Ausdruck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): h \cdot \nu_{\mathrm{Absorption}} - in den angeregten Zustand F* über:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{F} + h \cdot \nu_{\mathrm{Absorption}} \ \xrightarrow{k_a} \ \mathrm{F^*}
Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_a die Geschwindigkeitskonstante der Absorption, mit der das Fluorophor vom Grundzustand in den angeregten Zustand wechselt. Mit der Reaktionskonstante wird ausgedrückt, wie viele Edukte pro Sekunde in Produkte überführt werden.
Aus diesem angeregten Zustand kann das Fluorophor über verschiedenen Wege in den Grundzustand zurückkehren:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{(A)} \quad \mathrm{F^*} \ \xrightarrow{k_f} \ \mathrm{F} + h \cdot \nu_{\mathrm{Emission}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{(B)} \quad \mathrm{F^*} \ \xrightarrow{k_w} \ \mathrm{F} + \mathrm{W\ddot arme}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{(C)} \quad \mathrm{F^* + Q} \ \xrightarrow{k_q} \ \mathrm{F + Q^'}
In (A) geht das Fluorophor durch die Emission eines Photons in den Grundszustand über (Fluoreszenz), in (B) geht die Energie des angeregten Zustandes durch andere Prozesse strahlungslos in Wärme über und in (C) wird der angeregte Zustand durch den Quencher Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{Q} strahlungslos in den Grundzustand überführt. Dabei nimmt der Quencher die Energie des angeregten Zustandes des Fluorophors auf, symbolisiert durch Q'.
Die drei Reaktionswege (A), (B) und (C) besitzen die jeweiligen Geschwindigkeitskonstanten $ k_{f} $, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_w und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_q .
Die Fluoreszenz-Quantenausbeute ist definiert als:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi = \frac{I_e}{I_a}
Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I_e die Anzahl der durch Fluoreszenz emittierten Photonen pro Zeiteinheit und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I_a ist die Anzahl der vom Fluorophor absorbierten Photonen pro Zeiteinheit.
Die Anzahl der emittierten Photonen pro Zeiteinheit bestimmt sich mit (A) aus der Konzentration an angeregten Fluorophor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{[F^*]} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_f :
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I_e = k_f \cdot \mathrm{[F^*]}
(siehe auch: Reaktion erster Ordnung)
Die Anzahl der absorbierten Photonen lässt sich, analog zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I_e , aus der Konzentration Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{[F]} des Fluorophors F und der Geschwindigkeitskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_a bestimmen. Da die angeregten Fluorophore F* durch die oben genannten Prozesse (A), (B) und (C) wieder in den Grundzustand zurückkehren, sind die beiden Prozesse Absorption und Verlust der Anregungsenergie durch die drei Prozesse (A), (B) und (C) im Gleichgewichtszustand gleich groß:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I_a = k_a \cdot \mathrm{[F]} = k_f \cdot \mathrm{[F^*]} + k_w \cdot \mathrm{[F^*]} + k_q \cdot \mathrm{[Q] \cdot [F^*]}
Dabei sind die Reaktionen (A) und (B) Reaktionen erster Ordnung, während Reaktion (C) eine Reaktion zweiter Ordnung darstellt.
Durch Ersetzen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I_e und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I_a wird die Quantenausbeute der Fluoreszenz nach Kürzung um Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{[F^*]} zu:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi = \frac{k_f}{k_f + k_w + k_q \cdot \mathrm{[Q]}}
In der Abwesenheit des Quenchers - d.h. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{[Q]} = 0 - ist die Quantenausbeute gleich:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi_0 = \frac{k_f}{k_f + k_w}
Das Verhältnis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\phi_0 / \phi) ist gleich:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\phi_0}{\phi} = \frac{k_f + k_w + k_q \cdot \mathrm{[Q]}}{k_f + k_w} = 1 + \frac{k_q \cdot \mathrm{[Q]}}{k_f + k_w}
Die Fluoreszenzlebensdauer des angeregten Zustandes in Abwesenheit des Quencher ist die inverse Summe der beiden Reaktionsgeschwindigkeiten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_f , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_w und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_q \cdot \mathrm{[Q]} . Reaktionskonstanten erster Ordnung haben die Einheit [1/s] (sprich: pro Sekunde), Reaktionskonstanten zweiter Ordnung haben die Einheit [1/(mol s)] (sprich: pro Sekunde und mol):
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau = \frac{1}{k_f + k_w + k_q \cdot \mathrm{[Q]}}
In der Abwesenheit des Quenchers - d.h. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{[Q]} = 0 - ist die Fluoreszenzlebensdauer gleich:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau_0 = \frac{1}{k_f + k_w}
Wird in das Verhältnis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\phi_0 / \phi) die Fluoreszenzlebenszeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau_0 eingesetzt, so sich ergibt nach Umstellung die Gleichung:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\phi_0}{\phi} = 1 + \tau_0 \, k_q \cdot \mathrm{[Q]}
Wird dagegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau_0 in das Verhältnis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\phi_0 / \phi) eingesetzt so ergibt sich:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\phi_0}{\phi} = \frac{\tau_0}{\tau}
Wegen der direkten Proportionalität der Quantenausbeute Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi der Fluoreszenz zur Intensität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F der Fluoreszenz folgt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\phi_0}{\phi} = \frac{F_0}{F} = 1 + \tau_0 \, k_q \cdot \mathrm{[Q]}
und:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{F_0}{F} = \frac{\tau_0}{\tau}
Die Stern-Volmer-Konstante bei statischer Fluoreszenzlöschung
Bei der statischen Fluoreszenzlöschung - auch als static Quenching oder statisches Quenching bezeichnet - bildet sich aus dem Fluorophor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{F} und dem Quencher Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{Q} ein Komplex Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{FQ} , der selbst nicht fluoresziert. Dies lässt sich anhand einer chemischen Gleichung beschreiben:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{F \; + \; Q \ \leftrightharpoons \ FQ}
Das chemisches Gleichgewicht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_s zwischen dem Fluorophor, dem Quencher und dem Komplex aus Fluororphor und Quencher, wird nach dem Massenwirkungsgesetz gebildet und ist gleich der Stern-Volmer-Konstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_{SV} :
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_{SV} = K_s =\mathrm{\frac{[FQ]}{[F][Q]}}
Dabei ist $ \mathrm {[FQ]} $ die Konzentration des Komplexes aus Fluorophor und Quencher, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{[F]} die Konzentration des ungebundenen Fluorophors und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{[Q]} die Konzentration des ungebundenen Quenchers.
Bei der statischen Fluoreszenzlöschung ist das Verhältnis aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau_0 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau , im Gegensatz zur dynamischen Fluoreszenzlöschung, gleich eins:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\tau_0}{\tau} = 1
Das liegt daran, dass bei der statischen Fluoreszenzlöschung lediglich die Anzahl der anregbaren Fluorophore reduziert wird, während bei der dynamischen Fluoreszenzlöschung die Lebensdauer des angeregten Zustandes reduziert wird. Das Verhältnis der Lebensdauern bleibt bei der statischen Fluoreszenzlöschung daher konstant. Dieser Umstand ist ein wichtiges Unterscheidungsmerkmal für beide Arten der Fluoreszenzlöschung.
Für die gleiche Konzentration des Quenchers nimmt, bei steigender Temperatur, bei der statischen Fluoreszenzlöschung der Wert für die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_s prinzipiell ab. D. h. der Quencher löscht bei höheren Temperaturen schlechter, als bei niedrigeren Temperaturen: Bei höherer Temperatur wird der Quencher am Fluorophor schlechter gebunden, als bei niedrigerer Temperatur, weshalb sich die Anzahl der Quenchvorgänge bei steigender Temperatur verringert. Dies ist ein wichtiges Merkmal, um die statische Fluoreszenzlöschung von der dynamischen zu unterscheiden, da es sich bei der dynamischen Fluoreszenzlöschung prinzipiell andersherum verhält.
Herleitung
Die Assoziationskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_s lautet:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_s =\mathrm{\frac{[FQ]}{[F][Q]}}
Die Gesamtkonzentration Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{[F]_0} des Fluorophors setzt sich additiv aus der Konzentration des ungebundenen Fluorophors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{[F]} und der Konzentration des mit dem Quencher gebundenen Fluorophors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{[FQ]} zusammen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{[F]_0 = [F] + [FQ]}\,
Wird diese Gleichung nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{[FQ]} umgestellt und dann in die Gleichung der Assoziationskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_s eingesetzt, ergibt sich:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_s = \mathrm{\frac{[F]_0}{[F][Q]} - \frac{1}{[Q]}}
Diese Gleichung wird nun nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{([F]_0/[F])} umgestellt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{\frac{[F]_0}{[F]}} = 1 + K_s \cdot \mathrm{[Q]}
Wegen der direkten Proportionalität der Fluoreszenzintensität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F des Fluorophors zu seiner Konzentration Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{[F]} folgt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{\frac{[F]_0}{[F]}} = \frac{F_0}{F} = 1 + K_s \cdot \mathrm{[Q]}
Stern-Volmer-Gleichung bei gleichzeitiger dynamischer und statischer Fluoreszenzlöschung
Treten dynamische und statische Fluoreszenzlöschung gleichzeitig auf, so kann die Stern-Volmer-Gleichung in ihrer obigen Form nicht angewendet werden. Hier muss die Stern-Volmer-Gleichung der kombinierten Löschung verwendet werden[2]:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{F_0}{F} = (1 + K_d \cdot \mathrm{[Q]})(1+K_s \cdot \mathrm{[Q]})
Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_d die Stern-Volmer-Konstante für die dynamische und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_s die Stern-Volmer-Konstante der statischen Fluoreszenzlöschung. Der Plot der Stern-Volmer-Gleichung ist für die kombinierte Löschung nicht mehr linear. Ein nichtlineares Verhalten des Stern-Volmer-Plots weist deswegen auf die kombinierte Löschung hin.
Wegen des Zusammenhanges zwischen dynamischer Fluoreszenzlöschung und der Fluoreszenzlebensdauer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau kann die Stern-Volmer-Gleichung der kombinierten Löschung auch geschrieben werden als:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{F_0}{F} = \frac{\tau_0}{\tau} \cdot (1+K_s \cdot \mathrm{[Q]})
Der Wert des Verhältnisses Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\tau_0 / \tau) der Lebensdauern muss bei der kombinierten Löschung zwischen dem Wert für die dynamische und die statische Fluoreszenzlöschung liegen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{F_0}{F} > \frac{\tau_0}{\tau} > 1
Dieses Verhalten ist daher ebenfalls ein Hinweis auf die kombinierte Fluoreszenzlöschung.
Ist das Verhältnis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\tau_0 / \tau) der Lebensdauern bekannt, so kann die Gleichgewichtskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_s der statischen Fluoreszenzlöschung mittels der Stern-Volmer-Gleichung für die kombinierte Löschung ermittelt werden.
Durch Umstellen der Stern-Volmer-Gleichung für die kombinierte Löschung erhält man eine linearisierte Form der Gleichung:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left(\frac{F_0}{F} - 1\right) \cdot \frac{1}{\mathrm{[Q]}} = \left(K_d + K_s\right) + K_d \cdot K_s \cdot \mathrm{[Q]}
Trägt man den linken Term der Gleichung gegen die Konzentration Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{[Q]} auf, so erhält man im Stern-Volmer-Plot wiederum einen einfachen linearen Zusammenhang. Aus dem Anstieg Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (K_d \cdot K_s) und dem Achsenabschnitt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (K_d + K_s) können dann die Werte für $ K_{d} $ und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K_s ermittelt werden.
Anwendungen der Stern-Volmer-Gleichung
In Makromolekülen, wie z. B. Proteinen, können Fluorophore, wie z.B. die Aminosäure Tryptophan, für verschiedene Quencher unterschiedlich gut erreichbar sein. Diese Erreichbarkeit des Fluorophors hängt unter anderem von der Ladung und der Größe des Quenchers ab.
So ist ein Tryptophanrest in Proteinen für den geladenen Quencher Iodid I- nur erreichbar, wenn der Tryptophanrest an der Oberfläche des Proteins in das wässrige Medium reicht. In hydrophobe Bereiche kann Iodid nur schlecht vordringen. Für den Quencher Acrylamid ist ein Tryptophanrest nur erreichbar, wenn er sich an der Oberfläche und in keiner zu kleinen Tasche befindet: Acrylamid kann aufgrund seiner Größe nicht in jede "Ecke" des Proteins vordringen. Der Quencher O2 (bimolekularer Sauerstoff) dagegen kann auch Tryptophane löschen, die tief im Protein verborgen sind, da er klein genug und ungeladen ist.
Dieses Wissen kann verwendet werden, um die relative Lage von Fluorophoren, wie Tryptophan, in Proteinen zu ermitteln. Dazu können die Stern-Volmer-Plots für verschiedene Quencher verglichen werden oder das Protein wird im gefalteten und im ungefalteten Zustand untersucht, so dass vorher unzugängliche Fluorophore mit der Entfaltung des Proteins für den verwendeten Quencher zugänglich werden.
Siehe auch
Literatur
- Joseph R. Lakowicz: Principles of Fluorescence Spectroscopy, Third Edition, Springer Science+Business Media, 2006, ISBN 0-387-31278-1, ISBN 978-0-387-31278-1
- Kirsten Lotte: 3D-Fluoreszenzspektroskopie mit Tryptophan und Tryptophan-Analoga: von Lösungsmitteleinflüssen zu Proteinkonformationen, Universität Bielefeld Fakultät für Chemie (Dissertation), 2004, URN (NBN) urn:nbn:de:hbz:361-5533
Weblinks
Referenzen
- ↑ Otto Stern, Max Volmer: Über die Abklingungszeit der Fluoreszenz. Physikalische Zeitschrift, 20, 183-188, (1919)
- ↑ A. Young Moon, Douglas C. Poland, Harold A. Scheraga: Thermodynamic Data from Fluorescence Spectra. I. The System Phenol-Acetate, The Journal of Physical Chemistry, 69, 2960-2966, (1965)