Absorption (Physik)
Der Begriff Absorption (lateinisch absorptio „Aufsaugung“) bezeichnet im Allgemeinen das Aufsaugen oder In-sich-Aufnehmen von etwas und ist nicht zu verwechseln mit der Adsorption. In der Physik kann es sich um die Absorption einer Welle (elektromagnetische Wellen, Schallwellen), eines einzelnen Teilchens (etwa eines freien Elektrons in einem Atom) oder eines Teilchenstroms (Partikelstrahlen) in einem Stoff bzw. Körper handeln.
Auf manchen Arbeitsgebieten hat der Begriff Absorption dem entsprechend keine ganz feststehende Definition, sondern wird je nach dem gerade betrachteten Effekt etwas verschieden gebraucht. Beispiele dafür sind unten bei Röntgen- und Gammastrahlung und bei Neutronen genannt.
Bei der Transmission einer Welle oder Strahlung durch einen Stoff oder Körper führt die Absorption zu einer Schwächung der ursprünglichen Welle. Weitere Effekte, die eine ähnliche Schwächung bewirken können, wie die Streuung oder Reflexion, werden in der Optik dann mit der Absorption unter dem Begriff Extinktion (auch Absorbanz) zusammengefasst.
Absorption von Wellen und Teilchenstrahlen
Bei der Absorption von Wellen in einem absorbierenden, homogenen Material ist die Wahrscheinlichkeit der Absorption pro Wegeinheit bei niedrigen Energien in jeder Eindringtiefe gleich. Dann gilt ein exponentielles Gesetz, das Bouguer-Lambertsche Gesetz - oft kurz Lambertsches Gesetz genannt (nicht zu verwechseln mit dem Lambertschen Kosinusgesetz). Ist I0 der ursprüngliche Strom, beträgt der nach Durchlaufen der Schichtdicke d noch vorhandene Strom I(d):
- $ {\frac {I(d)}{I_{0}}}=e^{-\mu d}=\tau \, $
(Herleitung des Gesetzes: siehe Absorptionsgesetz). Dabei ist µ der von den Eigenschaften des absorbierenden Materials und oft auch von der Energie (Quantenenergie, Teilchenart und -geschwindigkeit) der Strahlung abhängige Absorptionskoeffizient. Sein Kehrwert ist die Eindringtiefe. Aus ihm lässt sich die Dicke der Halbwertsschicht berechnen.
Häufig treten jedoch Nebeneffekte auf, die zu ganz anderen Gesetzmäßigkeiten führen, wie im nebenstehenden Bild zu sehen ist. Dafür gibt es unterschiedliche Ursachen:
- Entstehung von Sekundärelektronen, die im durchstrahlten Material ausgelöst werden.
- Bei zu hohen Geschwindigkeiten ionisieren Protonen nur schwach.
- Elektronen besitzen wegen ihrer elektrischen Ladung eine scharf begrenzte maximale Eindringtiefe. Faustregel: in Körpergewebe (Fleisch) pro 2 MeV 1 cm.
- Hochenergetischen Photonen und Elektronen ist gemeinsam, dass sie ihr Dosismaximum nicht auf der Hautoberfläche, sondern einige Millimeter tiefer abgeben.
Die relativ dicke Luftschicht der Erde wirkt gemeinsam mit ihrem Magnetfeld als sehr wirksamer Absorber bzw. Teilchen-Ablenker hin zu den Magnetpolen der Erde für hochenergetische Teilchen von der Sonne oder aus dem Weltall. Je nach Teilchensorte und -energie steigt deshalb die Strahlungsaktivität im Van-Allen-Gürtel sehr stark an, die Erdoberfläche ist sehr gut geschützt. In der Nähe der Magnetpole erzeugen diese Teilchen Polarlicht; siehe auch Luftschauer.
Schall
Die Absorption von Schall findet durch Umwandlung der Leistung des Schalles (Luftschall, Körperschall, auch Erdbebenwellen) in thermische Energie in einem dämpfenden Medium oder an Grenzschichten – z. B. zwischen Luft, in der sich der Schall ausbreitet, und einer Festkörperoberfläche – statt. Sie ist unter anderem frequenz- und temperaturabhängig. Die Schallabsorption in Luft ist durch verschiedene thermodynamische Vorgänge bedingt, dabei ist sie in Gasen erheblich höher als in Festkörpern.
Elektromagnetische Wellen
Wenn elektromagnetische Strahlung in einem Material absorbiert werden kann, wird die Stärke der Absorption durch einen Materialparameter beschrieben, den Absorptionsgrad, der in der Regel von einer Vielzahl von Parametern (Temperatur, Wellenlänge) abhängig ist.
Sichtbares Licht
Die Lichtabsorption an Oberflächen oder beim Durchqueren von Materie ist im Allgemeinen material- und frequenzabhängig. Die Menge der auf dem Weg absorbierten oder gestreuten Photonen hängt neben dem frequenzabhängigen Extinktionskoeffizienten auch von Schichtdicke des Materials ab (vgl. Lambert-Beersches Gesetz).
In Abhängigkeit von der möglichen Bandstruktur der Moleküle können verschiedene Frequenzbereiche des Lichts unterschiedlich absorbiert werden, d. h., je nach Farbe ist die Absorption unterschiedlich stark (siehe Resonanzabsorption, Fraunhoferlinien). Benachbarte Frequenzanteile werden je nach Material und Einfallswinkel des Lichtes entweder reflektiert oder transmittiert. Wird beispielsweise eine gelb erscheinende Oberfläche mit weißem Licht bestrahlt, wird das grüne und rote Licht reflektiert/transmittiert und blaues Licht absorbiert (vgl. Farbsynthese). Bei der Absorption von Licht wird die aufgenommene Energie nicht nur in Wärme umgewandelt, sondern kann durch andere Mechanismen wie Fluoreszenz sowie durch Streuung an Aerosolen verlorengehen.
Wie bereits erwähnt, ist die Absorption (zum Teil stark) frequenzabhängig. Die Ursache liegt in der Bandstruktur des Materials, bei dem Photonen bestimmter Energie Atome oder Moleküle anregen, die Quantenübergänge mit genau dieser Energiedifferenz in der Elektronenhülle oder in ihren Molekülschwingungen (meist bei infrarotem Licht) besitzen. Grenzflächen verursachen eine zusätzliche, von der Brechzahldifferenz, der Einstrahlrichtung und der Polarisation abhängige Reflexion. Bei diffuser Reflexion spricht man in diesem Zusammenhang auch von Remission.
Der Lichtdurchgang durch eine Platte einschließlich Absorption kann direkt aus der komplexen Brechzahl über die Kramers-Kronig-Beziehungen abgeleitet werden. Damit wird die elektromagnetische Wechselwirkung direkt mit einer Materialeigenschaft in Beziehung gesetzt.
Röntgen- und Gammastrahlung
Auch beim Durchgang von Röntgen- und Gammastrahlung durch Materie ist die Wahrscheinlichkeit für Absorption proportional der Dicke d des durchstrahlten Stoffes, ebenso die Wahrscheinlichkeit für Streuung. Daraus ergibt sich eine exponentielle Abnahme der Intensität mit zunehmender Dicke:
- $ I(d)=I_{0}\,e^{-\mu d}\, $
Hier ist $ \mu =n\,\sigma $ der Absorptionskoeffizient, gemessen in m−1, $ n $ die Zahl der Atome im Material pro Kubikmeter und σ der Wirkungsquerschnitt für Absorption. In der Optik heißt dieses Gesetz das Lambert-Beersche Gesetz. Man kann die Schwächung des Strahls auch durch eine Halbwertsdicke beschreiben. Diese ist umgekehrt proportional zum Absorptionskoeffizienten.
Prozesse mit Energieverlust
Oft werden zur Absorption (nur) diejenigen Prozesse gezählt, bei denen ein Photon seine Energie teilweise oder ganz abgibt. Im Energiebereich der Gammastrahlung sind das:
- der photoelektrische Effekt, bei dem ein Elektron mit der Energie des Photons (verringert um die Ionisationsenergie des betroffenen Atoms) freigesetzt wird,
- der Comptoneffekt: das Photon gibt seine Energie teilweise an ein Elektron ab, und das gestreute Photon hat eine verringerte Energie,
- bei Energien von mindestens 1,022 MeV die Paarbildung in der Nähe eines Atomkerns: an Stelle des Photons entstehen ein Positron und ein Elektron.
Der Wirkungsquerschnitt für jeden dieser Prozesse hängt von der Energie des Photons und der Ordnungszahl des Materials ab. Der photoelektrische Effekt überwiegt für kleine Energien und hohe Ordnungszahl, die Paarbildung für hohe Energien und hohe Ordnungszahl, der Comptoneffekt für mittlere Energien und niedrige Ordnungszahl.
Der Gesamt-Wirkungsquerschnitt für Absorption ist die Summe aus den Einzelquerschnitten der verschiedenen Prozesse, für die so definierte Absorption also:
- $ \sigma _{\mathrm {Abs} }=\sigma _{\mathrm {Photo} }+\sigma _{\mathrm {Compton} }+\sigma _{\mathrm {Paar} }\, $.
Die freigesetzten Elektronen aus allen drei Prozessen können ihrerseits bei genügender Energie weiter ionisierend wirken.
Abschwächung des einfallenden Strahls
Zur „Absorption“ wird aber manchmal auch jeder Prozess gezählt, der ein Photon aus dem einfallenden Strahlenbündel entfernt, mit oder ohne Energieumsetzung. Dann muss bei Gamma- und Röntgenstrahlung auch die Rayleigh-Streuung mit berücksichtigt werden, die nur die Flugrichtung des Photons ändert. Der Gesamtwirkungsquerschnitt ist dann
- $ \sigma _{2}=\sigma _{\mathrm {Photo} }+\sigma _{\mathrm {Compton} }+\sigma _{\mathrm {Paar} }+\sigma _{\mathrm {Rayleigh} }\, $.
Der so definierte Absorptionskoeffizient, der lineare Schwächungskoeffizient, ist in der Berechnung der oben beschriebenen exponentiellen Abnahme zu verwenden. Auch dann gilt diese nur mit gewissen Idealisierungen, z. B. für einen dünnen, linienförmigen Strahl. Bei Durchstrahlung etwa einer dicken, massiven Wand gilt sie nicht, weil es hier z. B. auch zur Hineinstreuung in den Strahl kommt.
Fernerkundung
In der Fernerkundung bezieht sich der Ausdruck Absorption auf das Aufnehmen von elektromagnetischer Strahlungsenergie durch die Atmosphäre oder die Erdoberfläche. So wird vorübergehend Energie gespeichert und entsprechend dem Planckschen Strahlungsgesetz in irgendeine Richtung wieder emittiert. So reemittiert die durch die Sonne erwärmte Erdoberfläche Strahlung im Wellenlängenbereich des mittleren Infrarot (etwa 8 bis 14 µm). Diese Strahlung wird durch Wolken oder Treibhausgase absorbiert und so verzögert in den Weltraum bzw. wieder zur Erde reemittiert (Treibhauseffekt). Daher wird es in klaren Nächten kälter als in bedeckten.
LIDAR ist in der Lage, ein Schichtprofil der Konzentration von Spurengasen zu liefern. Hierbei wird mit speziellen Wellenlängen gearbeitet, die die Moleküle der Spurengase selektiv anregen und so absorbiert und reemittiert werden. Auch ein Profil der Windgeschwindigkeit kann gewonnen werden (Doppler-Verschiebung rückgestreuter Strahlung).
Farb- bzw. wellenlängenabhängige Absorption der Erdoberfläche hilft, zwischen verschiedenen Bedeckungen zu unterscheiden. Man nutzt den sichtbaren und den infraroten Spektralbereich, um Vegetationsarten und Temperaturen zu bestimmen.
Mit satellitengestütztem Radar kann man Oberflächenprofile gewinnen, aber auch Wellenfrequenz und -höhe bestimmen.
Funkwellen
Funkwellen zur Nachrichtenübertragung oder beim Radar werden in der Atmosphäre durch freie Ladungsträger (Ionisierung) sowie Regen und Schnee bzw. Hagel absorbiert, reflektiert und gestreut.
So breiten sich Mittelwellen tagsüber schlecht aus (Ionisierung der unteren Atmosphäre durch Sonnenstrahlung), nachts dagegen gut. Funkwellen großer Wellenlänge (Mittel- und Kurzwelle) werden unter flachem Winkel an der Unterseite der Ionosphäre reflektiert; Kurzwellen gelangen so um die gesamte Erde.
Während die Absorption von Mikrowellen an Niederschlag bei der Nachrichtenübertragung oft große Probleme bereitet (Richtfunk, Up- und Down-Links der Satellitenkommunikation), ist man mit Niederschlagsradar (bodengestützt) bzw Wetterradar an Bord von Schiffen und Flugzeugen in der Lage, Niederschlagsgebiete und sogar deren Tropfen- bzw. Hagelkorngröße sowie die Windgeschwindigkeit zu bestimmen. Hier ist die Rayleigh-Streuung maßgeblich – je geringer die Wellenlänge, desto stärker streuen Partikel mit Abmessungen wesentlich unterhalb der Wellenlänge. Die Windgeschwindigkeit wird anhand der Doppler-Verschiebung der rückgestreuten Wellen bestimmt.
Bei Sonnenstürmen kann es zum Erliegen des Funkverkehrs kommen, wenn die Atmosphäre bis in niedrige Schichten ionisiert wird und Funkwellen absorbiert.
Zur Realisierung von Funkmesszellen müssen die Wände entweder hohen Absorptionsgrad besitzen oder möglichst große Oberfläche, wie im Bild gezeigt. Dann genügt auch geringerer Absorptionsgrad des Materials. Wegen der sehr unruhigen Oberfläche können auch kaum gerichtete Reflexionen auftreten.
Freie Neutronen
Auch im Zusammenhang mit Neutronen wird der Begriff Absorption nicht einheitlich verwendet. Als Absorption kann einerseits vom kernphysikalischen Standpunkt jede Aufnahme eines freien Neutrons in einen Atomkern bezeichnet werden, gleichgültig, wie der Kern sich danach verhält. Ein Urankern kann sich z. B. nach der Absorption spalten. Dabei werden 2 bis 3 Neutronen freigesetzt; die Absorption hat dann zu einer Neutronenvermehrung geführt.
In der Reaktorphysik und Physik der Fusionsreaktor-Blankets dagegen geht es oft um die Berechnung einer „Neutronenbilanz“. Hier werden unter Absorption (nur) diejenigen Prozesse zusammengefasst, die die Gesamtzahl der freien Neutronen im betrachteten Volumen verringern, wie z. B. (n,$ \gamma $)-, (n,p)-, (n,$ \alpha $)-Reaktionen. Prozesse wie die Kernspaltung oder (n,2n)-Reaktionen zählen hier dagegen zur Produktion, weil sie die Neutronenzahl erhöhen.
Siehe auch
- Absorptionsspektrum, Absorptionsbande
- Abschirmung (Strahlung)
- Reflexionsarmer Raum
Weblinks
- Absorption solarer Strahlung in der Atmosphäre. Institut für Physische Geographie (IPG). Abgerufen am 27. September 2010.