Absoluter Nullpunkt

Absoluter Nullpunkt

<adsense>
 google_ad_client    = 'ca-pub-4714443941585462';
 google_ad_width     = 300;
 google_ad_height    = 250;
 google_ad_slot = '2794827193';
</adsense>

Der absolute Nullpunkt bezeichnet den unteren Grenzwert für die Temperatur. Dieser definiert den Ursprung der absoluten Temperaturskala und wird als 0 K, also −273,15 °C, festgelegt. Die Existenz und der extrapolierte Wert des absoluten Nullpunkts können aus dem ersten Gesetz von Gay-Lussac abgeleitet werden.

Nach dem dritten Hauptsatz der Thermodynamik ist der absolute Nullpunkt eine ideale Messgröße, jedoch können reale Temperaturen beliebig nahe dem absoluten Nullpunkt erreicht werden. Mit Laserkühlung konnten Proben schon bis auf wenige Milliardstel Kelvin abgekühlt werden.

Geschichte

Guillaume Amontons fand 1699 heraus, dass sich das Volumen einer Gasmenge linear mit ihrer Temperatur verändert. Dies führte zunächst zu verschiedenen Hypothesen, wonach es einen absoluten Nullpunkt geben müsse, bei dem das Volumen der Gasmenge gleich null wäre, oder aber die Gesetzmäßigkeit der Volumenverkleinerung gelte bei flüssigen Gasen nicht mehr. Dann könne man die Temperatur beliebig weit absenken.

William Thomson, 1. Baron Kelvin entdeckte 1848, dass nicht die Volumenverkleinerung für diese Frage entscheidend ist, sondern der Energieverlust. Hierbei ist es unerheblich, ob es sich um Gase oder feste Stoffe handelt. Thomson schlug daraufhin vor, eine neue, absolute Temperaturskala zu definieren, zu der die Volumenänderung proportional ist. Diese neue Temperaturskala hat keine negativen Werte mehr, beginnt bei 0 (dies entspricht −273,15 Grad Celsius, siehe dazu Eigenschaften der Kelvinskala) und steigt so an, dass ein Temperaturunterschied von einem Kelvin jeweils einem Temperaturunterschied von einem Grad Celsius entspricht. Diese gleiche Schrittweite wurde erreicht durch die Festlegung, dass das Kelvin der 273,16-te Teil der thermodynamischen Temperatur des Tripelpunktes des Wassers – dieser liegt bei 0,01 °C – ist. Die Einheit für diese Temperaturskala wurde zunächst Grad A (A für absolut) genannt, später K (K für Kelvin). Das Kelvin wird seit 1967 per Definition nicht mehr mit Grad (°) ergänzt.

„Wenn man jetzt das Magnetfeld plötzlich entfernt, so tritt der thermomagnetische Abkühlungseffekt ein. Auf diese Weise wurde mit Kaliumchromalaun eine Temperatur von 0,05 K erzielt. Im Jahre 1935 ist man sogar bereits zu 0,005 K vorgedrungen. […] Um den erreichten Fortschritt richtig zu beurteilen, müßte man eigentlich die logarithmische Temperaturskala, wie sie von Lord Kelvin vorgeschlagen worden ist anwenden. Danach würde eine Senkung von 100 K auf 10 K dieselbe Bedeutung zukommen, wie […] von 1 K auf 0,1 K.“

Heinrich Greinacher: Physik in Streifzügen. Verlag von Julius Springer, Berlin 1939.

Eigenschaften

Physikalische Systeme mit Temperaturen nahe am absoluten Nullpunkt weisen einige besondere Verhaltensweisen auf, wie Suprafluidität und Bose-Einstein-Kondensate. Diese Temperaturgebiete der Tieftemperaturphysik können nur noch mit besonderen Methoden erreicht werden.

Bei Normaldruck sind am Nullpunkt alle Elemente fest, abgesehen von Helium, das sich dort in einer flüssigen bzw. suprafluiden Phase befindet.

Thermodynamische Aussagen über den Nullpunkt im Zusammenhang mit der Entropie macht das Theorem von Nernst. Perfekte Kristalle erreichen beim Nullpunkt einen konstanten Wert $ S=k_{\rm {B}}\ln 1=0 $, da es nur eine mögliche Realisierung des Makrozustands gibt – gemäß der statistischen Definition von Entropie ist diese als der Logarithmus der Anzahl der möglichen Mikrozustände definiert. Bei (amorphen) Gläsern gibt es mehrere gleichenergetische Realisierungen eines Zustands mit $ T=0\,{\rm {K}} $, so dass die Entropie von null verschieden ist.

Literatur

  • Tom Shachtman: Minusgrade. Auf der Suche nach dem absoluten Nullpunkt (= rororo 6118 rororo Science. Sachbuch). Rowohlt-Taschenbuch-Verlag, Reinbek bei Hamburg 2001, ISBN 3-499-61118-X.
  • Kurt Mendelssohn: Die Suche nach dem absoluten Nullpunkt. Kindler, München 1966.

Die News der letzten Tage