Physikalische Chemie
Die physikalische Chemie (kurz: PC) ist neben der anorganischen und der organischen Chemie eines der “klassischen” Teilgebiete der Chemie. Sie behandelt den Grenzbereich zwischen Physik und Chemie, insbesondere um die Anwendung von Methoden der Physik auf Objekte der Chemie. Während in der Präparativen Chemie Fragestellungen der Methodik der chemischen Synthese bekannter und neuer Substanzen im Vordergrund stehen, versucht die physikalische Chemie mit Hilfe theoretischer und experimenteller Methoden die Eigenschaften von Stoffen und deren Umwandlung zu beschreiben, mit dem Ziel, für alle relevanten Vorgänge allgemein gültige mathematische Formeln mit klar definierten Einheiten und exakten Zahlenwerten aufzustellen.
Naturgemäß besteht eine große Nähe zur Physik (insbesondere zur Molekülphysik), und die Klassifikation eines Forschungsthemas als "Physik" oder "Chemie" ist häufig wenig eindeutig. Trotzdem wird teilweise je nach Schwerpunktsetzung zwischen physikalischer Chemie und chemischer Physik unterschieden. Die physikalische Chemie liefert die theoretischen Grundlagen für die Technische Chemie und die Verfahrenstechnik. Chemiker, die vorwiegend im Bereich der physikalischen Chemie tätig sind, werden als Physikochemiker bezeichnet. Die physikalische Chemie gehört zum Pflichtteil in jedem Chemiestudium.
Geschichte
Die physikalische Chemie wurde um 1890 von Svante Arrhenius, Jacobus Henricus van 't Hoff, Wilhelm Ostwald und Walther Nernst als eigenständiges Lehrfach an Hochschulen eingeführt. Zuvor gab es auch schon Naturwissenschaftler, die sich mit physikalisch-chemischen Problemen beschäftigten (z. B. Thomas Graham, Joseph Louis Gay-Lussac, Robert Wilhelm Bunsen, Hermann Helmholtz, Robert Boyle usw.), ein eigenständiges Lehrfach physikalische Chemie an Universitäten gab es jedoch noch nicht. Im angelsächsischen Raum gilt Josiah Willard Gibbs als Begründer der physikalischen Chemie mit seinem 1867 veröffentlichten Artikel "On the Equilibrium of Heterogeneous Substances", in dem er die grundlegenden Konzepte Freie Energie, chemisches Potential und Phasenregel entwickelte. Die Arbeiten von Gibbs, Robert Mayer, Hermann Helmholtz,Jacobus Henricus van 't Hoff bildeten für Wilhelm Ostwald eine wichtige Verkettung des Energiebegriffes aus chemischer Sicht. Ostwald wurde auch erster Herausgeber der 1887 gemeinsam mit van 't Hoff gegründeten Zeitschrift für physikalische Chemie und hatte in Leipzig den ersten deutschen Lehrstuhl für physikalische Chemie inne. Das erste eigenständige Institut für physikalische Chemie wurde 1895 von Walther Nernst, der sich bei Ostwald habilitiert hatte, in Göttingen gegründet. Weitere spezifisch der physikalischen Chemie gewidmete Institute folgten dann in rascher Folge in Leipzig (1897), Dresden (1900), Karlsruhe (1903), Breslau, Berlin (1905) und andernorts. Wilhelm Ostwald gründete 1894 die Deutsche Elektrochemische Gesellschaft, die 1901 in Deutsche Bunsen-Gesellschaft für Angewandte Physikalische Chemie umbenannt wurde. In England wurde 1903 die Faraday Society (heute Faraday Division der Royal Society of Chemistry) gegründet. Inzwischen beschäftigen sich unzählige Universitäts- und mehrere Max-Planck-Institute mit physikalischer Chemie.
Weitere Details finden sich unter Geschichte der Chemie, eine Liste bedeutender Physikochemiker befindet sich hier.
Teilgebiete
Die physikalische Chemie ist in verschiedene Teilgebiete gegliedert, in denen unterschiedliche Phänomene untersucht werden. Die wichtigsten sind Theoretische Chemie, Thermodynamik, Kinetik, Spektroskopie und Elektrochemie.
Theoretische Chemie
In der Theoretischen Chemie versucht man mit Hilfe der Mathematik oder von Computersimulationen und Rechnungen die Eigenschaften von einzelnen Molekülen oder makroskopischen Stoffmengen vorauszusagen. Die Quantenmechanik liefert die Grundlagen zum Verständnis des Aufbaus der Materie und der chemischen Bindung, während die Statistische Thermodynamik die Verknüpfung mit der makroskopischen Thermodynamik liefert.
Chemische Thermodynamik
Hauptartikel: Thermodynamik
Die chemische Thermodynamik vereinheitlichte die Energiebegriffe der elektrochemischen Arbeit (Elektromotorische Kraft), Wärmeenergie durch Temperaturerhöhung eines Stoffes, der Arbeit bei Gasausdehnung (Dampfmaschine, Verbrennungsmotor) und der Wärmeenergie bei Stoffumsetzungen (Enthalpie, z. B. Verbrennung von Kohle oder Benzin).
Die chemische Thermodynamik ermöglicht auch Aussagen, ob Stoffumsetzungen möglich sind, welche Energien sich bei einer Reaktion entwickeln oder zugeführt werden müssen, welche Stoffkonzentrationen bezüglich Produkten zu Edukten (Ausgangsstoffen) entsprechend dem Massenwirkungsgesetz zu erwarten sind, ob eine Temperatur- oder Druckerhöhung den Stoffumsatz fördert oder dämpft, welches Redoxpotential oder Ionenkonzentrationen einzelner Stoffe zu erwarten ist.
Verhalten der Gase bei Temperatur-, Volumen-, Druckänderungen
Bei Temperaturänderung und gleichbleibenden Außendruck ändert sich das Volumen eines Gases proportional zur Temperaturänderung. Bei Temperaturerhöhung dehnt sich das Gas aus, bei einer Abkühlung zieht es sich zusammen. Der Ausdehnungsfaktor beträgt 1/273 je Grad K. Wird ein Gas unter starkem Druck zusammengepresst, steigt die Temperatur und innere Energie des Gases. Diese innere Energie eines Gases kann auch Arbeit abgeben, indem sich das Gas ausdehnt. Dieser Prozess wurde beispielsweise genutzt, um Dampfmaschinen anzutreiben. Dehnt man ein Gas sehr schnell in einem Zylinder mit einem Kolben auf ein größeres Volumen aus, so kühlt sich das Gas ab. Dieser Prozess findet beispielsweise in Kühlschränken oder Luftverflüssigungsanlagen Verwendung. In einer Dampfmaschine wird nur ein bestimmter Teil der Wärmeenergie in mechanische Energie umgewandelt. Die Wärmeenergie wird zu Arbeit, die Gesamtenergie eines abgeschlossenen Systems ändert sich jedoch nicht. Den Quotient des Wärmeenergieanteil zu der Temperatur die bei diesem Prozess ungenutzt an die Umgebung abgegeben wird bezeichnet man als Entropie. Auch das Ausströmen eines Gases in ein Vakuum ist mit einer Entropiezunahme verbunden, der Prozess läuft nicht freiwillig in der umgekehrten Richtung ab.
Chemische Stoffumwandlungen
Chemische Stoffumwandlungen, die Änderungen der Aggregatzustände oder das Lösen von Salzen oder konzentrierten Säuren oder Basen in Wasser sind häufig mit einer Wärmeabgabe oder einer Wärmeaufnahme verbunden. Früher glaubten Chemiker, dass die Wärmeentwicklung Grundlage dafür ist, dass chemische Reaktionen zwischen Stoffen eintreten. Es wurden jedoch später auch Umsetzungen gefunden, bei der eine Abkühlung eintrat. Naturwissenschaftler erkannten, dass bei Stoffumwandlungen mit Wärmeabnahme, die Entropie für chemische Prozesse eine wichtige Rolle spielen musste.
Die Energiemenge jeder Stoffumwandlung kann auf ein Mol Stoff bezogen werden, damit die Ergebnisse verglichen werden können. Bei der Verbrennung von 12 g Kohlenstoff zu 48 g Kohlendioxid wird eine andere Wärmemenge ( Enthalpie ) frei als bei der Verbrennung von 12 g Kohlenstoff zu 28 g Kohlenmonoxid. Jeder stofflichen Verbindung auf ein Mol bezogen kann ein bestimmter Energiebetrag (Standardbildungsenthalpie) anhand der gemessenen Wärmeenergien zugewiesen werden. Unbekannte Energiebeträge, z.B. der Bildung von Kohlendioxid aus Kohlenmonoxid und Sauerstoff, können durch eine Summenbildung ermittelt werden. Aus der Kenntnis Standardbildungsenthalpien kann der Chemiker bestimmen, wie viel Wärmeenergie bei einer Stoffumsetzung benötigt wird oder bei einer Reaktion frei wird. Bei der Verbrennung von Wasserstoffgas und Sauerstoffgas entsteht Wasser und Wärmeenergie. Gleichzeitig vermindert sich das Gasvolumen. Die Gasverminderung bei dieser Reaktion ist eine Energiegröße (Entropie ), deren Energieinhalt sich aus der Änderung des Gasvolumens entsprechend den obigen Ausführungen ergibt. Für die Mehrzahl der Stoffe kann auch die Standardbildungsentropien bestimmt worden. Energetisch ist die Standardbildungsentropie durch Multiplikation mit der absoluten Temperatur (K) zu bestimmen. Standardbildungsenthalpie und Standardbildungsentropie sind verknüpft durch die freie Enthalpie. Bildet man die Differenzen aus den freien Enthalpien der Endprodukte zu den Ausgangsstoffen, so erhält man die freie Reaktionsenthalpie. Die freie Reaktionsenthalpie muss immer negativ sein, damit eine Reaktion möglich ist, ist sie positiv, ist die chemische Reaktion unmöglich.
Das Massenwirkungsgesetz - oder genauer das chemische Gleichgewicht mit der Gleichgewichtskonstante K - beschreibt die multiplikative Verknüpfung der Konzentrationen der Produkte zu den Ausgangsstoffen. Die freie Reaktionsenthalpie ist durch eine einfache Formel mit der Gleichgewichtskonstanten des Massenwirkungsgesetzes verknüpft. Wenn die freie Reaktionsenthalpie negativ ist, bilden sich vornehmlich im Gleichgewicht aus den Ausgangsstoffen die Produkte; ist die Reaktionsenthalpie positiv, findet fast keine Umsetzung statt. Durch Temperatur- oder Druckänderungen kann das Gleichgewicht einer chemischen Umsetzung häufig verändert werden. Manchmal werden jedoch auch Katalysatoren benötigt, damit sich das Gleichgewicht wie gewünscht einstellt. Vor der Entwicklung des Haber-Bosch-Verfahrens zur Gewinnung von Ammoniak war aus der Thermodynamik bekannt, dass eine Bildung von Ammoniak aus Wasserstoff und Stickstoff möglich sein sollte. Lange Zeit versagte jedoch die Bildung, erst durch Katalysatoren und unter höheren Temperaturen und Druck lief die Reaktion wie gewünscht ab. Der Druck war nötig, um die Entropieabnahme zu kompensieren, eine hohe Temperatur wirkte zwar nachteilig auf die Entropie, jedoch vorteilhaft bei der katalytischen Aktivierung.
Eine besonders wichtiges Gesetz, die van-’t-Hoff’sche Gleichung (RGT-Regel), beschreibt den Gleichgewichtsänderung in Abhängigkeit von der Temperaturänderung. Auch Löslichkeitsprodukte von anorganischen und organischen Salzen in Wasser und anderen Flüssigkeiten lassen sich aus der freien Reaktionsenthalpie und dem Massenwirkungsgesetz berechnen. Bei Redoxreaktionen liefert die Nernst-Gleichung eine Möglichkeit, die Konzentrationen von Ionen oder die elektromotorischen Potentiale (beispielsweise von Kaliumpermanganat in saurer, neutraler und basischer Lösung) zu berechnen.
Kinetik
Die Kinetik beschäftigt sich mit dem zeitlichen Ablauf chemischer Reaktionen (Reaktionskinetik) oder von Transportvorgängen (z. B. Diffusion, Stoffabscheidung an Oberflächen, Katalyse). In der Kinetik werden sowohl der makroskopische Verlauf einer Reaktion (Makrokinetik) als auch der genaue Verlauf einer Reaktion in den einzelnen Elementarreaktionen untersucht (Mikrokinetik).
Spektroskopie
Spektroskopie ist ein Sammelbegriff für eine Klasse experimenteller Verfahren, die untersuchen, wie eine Probe Energie in Form von elektromagnetischer Strahlung (Radiowellen, Mikrowellen, Infrarot, sichtbares Licht, UV, Röntgen) aufnehmen oder abgeben kann. Ziel der Spektroskopie ist es, aus dem erzielten Spektrum Rückschlüsse auf die Probe zu ziehen, zum Beispiel auf deren innere Struktur (zwischenmolekulare Kraft), stoffliche Zusammensetzung oder Dynamik.
Elektrochemie
Die Elektrochemie beschäftigt sich mit den Eigenschaften geladener Teilchen, insbesondere Ionen sowie den Auswirkungen von elektrischem Strom auf Stoffe. Die wichtigsten Untersuchungsgebiete der Elektrochemie sind wässrige Lösungen von Ionen, die sogenannten Elektrolyte und die Vorgänge an der Grenzfläche zwischen Elektrolyten und Elektroden. Technisch wichtige Anwendungen der Elektrochemie sind die Brennstoffzelle und die Abscheidung von Metallen auf Oberflächen in der Galvanotechnik.
Relevanz in der Technik und im Alltag
Die physikalische Chemie beschäftigt sich mit vielen Objekten, die großes Anwendungspotential besitzen oder von entscheidender Bedeutung für die Lebensqualität der Menschheit sind.
- Im Bereich Reaktionskinetik erhielten Paul J. Crutzen, Mario J. Molina und Frank Sherwood Rowland den Nobelpreis für ihre Forschung über den Reaktionsmechanismus der Bildung und Zersetzung von Ozon.
- In praktisch jedem Auto arbeitet eine Lambdasonde im Katalysator, die ständig eine Abgasanalyse durchführt und die Kraftstoffeinspritzung anpasst, um möglichst wenig unverbrannten Kraftstoff auszustoßen und damit die Effizienz zu erhöhen.
- Für die Entwicklung neuartiger Akkus für Laptops und Mobiltelefone ist elektrochemisches Wissen unabdingbar.
- Im Bereich Wirkstoffentwicklung für die Pharmazeutische Industrie kommen immer mehr Methoden der Theoretischen Chemie zum Einsatz.
- Die physikalische Chemie ist eine der Schlüsseldisziplinen der Nanotechnologie.
- Die Methoden der Oberflächenchemie erlauben Einblicke in den Ablauf der Ammoniaksynthese, ohne die die Kunstdüngerherstellung nicht möglich und die weltweite Nahrungsmittelproduktion weit schwieriger wäre.
Literatur
Allgemeine Lehrbücher
- P. W. Atkins: Physikalische Chemie. Wiley-VCH, 2006, ISBN 978-3-527-31546-8.
- G. Wedler: Lehrbuch der Physikalischen Chemie. Wiley-VCH, 2004, ISBN 3-527-31066-5.
- T. Engel, P. Reid: Physikalische Chemie. Pearson Studium, 2006, ISBN 978-3-8273-7200-0
- D. A. McQuarrie, J. D. Simon, J. Choi: Physical Chemistry, A Molecular Approach. University Science Books, 1997, ISBN 0-935702-99-7.
- W. Bechmann, J. Schmidt: Einstieg in die physikalische Chemie für Nebenfächler. Teubner, 2005, ISBN 3-8351-0035-1
- W. J. Moore, D. O. Hummel, G. Trafara, K. Holland-Moritz: Physikalische Chemie. Walter de Gruyter, 1999, ISBN 3-11-010979-4.
- R. Brdicka: Grundlagen der physikalischen Chemie. Wiley-VCH, 1990, ISBN 3-527-29684-0.
- R. A. Alberty, R. J. Silbey: Physical Chemistry. John Wiley and Sons, 1997, ISBN 0-471-10428-0.
- G. M. Barrow: Physical Chemistry. McGraw-Hill Education, 1996, ISBN 0-07-005111-9.
- R. G. Mortimer: Physical Chemistry. Academic Press, 2000, ISBN 0-12-508345-9.
- R. Stephen Berry, Stuart A. Rice, John Ross: Physical Chemistry. 2nd ed., Oxford University Press, 2000, ISBN 0-19-510589-3.
- Georg Job, Regina Rüffler: Physikalische Chemie - Eine Einführung nach neuem Konzept mit zahlreichen Experimenten. Vieweg+Teubner, Studienbücher Chemie, 2010, ISBN 978-3-8351-0040-4.
Spezielle Lehrbücher
- Theoretische Chemie#Literatur
- Thermodynamik#Literatur
- Statistische Mechanik#Literatur
- Kinetik (Chemie)#Literatur
- Elektrochemie#Literatur
- Oberflächenchemie#Literatur
- Spektroskopie#Literatur
Physikalisch-chemische Fachzeitschriften
- Bunsen-Magazin der Deutschen Bunsen-Gesellschaft für Physikalische Chemie
- Chemical Physics / Chemical Physics Letters (engl.) ISSN 0009-2614
- ChemPhysChem (engl.) – A European Journal of Chemical Physics and Physical Chemistry ISSN 1439-4235
- Journal of Chemical Physics (JCP) (engl.) ISSN 0021-9606
- Journal of Physical Chemistry A (JPC A) (engl.) – Molecules, Spectroscopy, Kinetics, Environment & General Theory (A) ISSN 1089-5639 (A)
- Journal of Physical Chemistry B (JPC B) (engl.) – Condensed Matter, Materials, Surfaces, Interfaces & Biophysical Chemistry (B) ISSN 1520-6106 (B)
- Journal of Physical Chemistry C (JPC C) (engl.) – Nanomaterials and Interfaces ISSN 1932-7447
- Physical Chemistry Chemical Physics (PCCP) (engl.) ISSN 1463-9076
- Zeitschrift für Physikalische Chemie (ZPC) ISSN 0942-9352
- weitere Zeitschriften
Weblinks
- Walther Nernst: Die Ziele der physikalischen Chemie (Festrede 2. Juni 1896. Digitalisat/Faksimile)
- Aktuelle Wochenschau zum Jahr der Chemie 2003 – ein Einblick in aktuelle physikochemische Forschung
- Das Berufsbild des Physikochemikers, Deutsche Bunsen-Gesellschaft für Physikalische Chemie (PDF-Datei; 6,13 MB)
- Physical Chemists – Berufsfeldbeschreibung der American Chemical Society
Siehe auch
- Portal:Chemie
- Portal:Physik
- Portal:Werkstoffe
- Kategorie:Physikalische Chemie
Allgemeine Chemie · Anorganische Chemie · Biochemie · Organische Chemie · Physikalische Chemie · Technische Chemie · Theoretische Chemie
Agrochemie · Analytische Chemie · Atmosphärenchemie · Bioanorganische Chemie · Biogeochemie · Bioorganische Chemie · Biophysikalische Chemie · Chemoinformatik · Chemometrik · Elektrochemie · Femtochemie · Festkörperchemie · Geochemie · Kernchemie · Klinische Chemie · Kohlechemie · Kolloidchemie · Kombinatorische Chemie · Kosmochemie · Lebensmittelchemie · Magnetochemie · Medizinische Chemie · Meereschemie · Metallorganische Chemie · Naturstoffchemie · Oberflächenchemie · Oleochemie · Petrochemie · Pharmazeutische Chemie · Photochemie · Physikalische Organische Chemie · Polymerchemie · Quantenchemie · Radiochemie · Supramolekulare Chemie · Stereochemie · Strukturchemie · Textilchemie · Thermochemie · Umweltchemie