Zeit
Physikalische Größe | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | Zeit | ||||||||||||
Formelzeichen der Größe | $ t $ | ||||||||||||
Formelzeichen der Dimension | T | ||||||||||||
|
Die Zeit ist eine physikalische Größenart. Das Formelzeichen der Zeit ist t, ihre SI-Einheit ist die Sekunde s.
Die Zeit beschreibt die Abfolge von Ereignissen, hat also im Gegensatz zu anderen physikalischen Größen eine eindeutige, unumkehrbare Richtung. Mit Hilfe der physikalischen Prinzipien der Thermodynamik kann diese Richtung als Zunahme der Entropie, d. h. der Unordnung in einem abgeschlossenen System bestimmt werden. Aus einer philosophischen Perspektive beschreibt die Zeit das Fortschreiten der Gegenwart von der Vergangenheit kommend zur Zukunft hinführend. Nach der Relativitätstheorie bildet die Zeit mit dem Raum eine vierdimensionale Raumzeit, in der die Zeit die Rolle einer Dimension einnimmt. Dabei ist der Begriff der Gegenwart nur in einem einzigen Punkt definierbar, während andere Punkte der Raumzeit, die weder in der Vergangenheit noch der Zukunft dieses Punktes liegen, als „raumartig getrennt“ von diesem Punkt bezeichnet werden.
Im SI-Einheitensystem ist die Zeit eine Basisgröße, wobei aus diesen Größen andere Größen aufgebaut werden.
Die Bürgerliche Zeit (UT, MEZ usw.) richtet sich annähernd nach dem Sonnenstand und ist durch staatliche Regelungen innerhalb einer gewissen Zeitzone einheitlich.
In der Philosophie fragt man seit jeher nach dem Wesen der Zeit, was auch Themen der Weltanschauung berührt. Für die physikalischen, die Bio- und Humanwissenschaften ist die Zeit ein zentraler, auch messtechnisch erfassbarer Parameter, u. a. bei allen bewegten Körpern (Dynamik, Entwicklung), in der Chronobiologie oder der Zeitsoziologie. Die Psychologie untersucht die Zeitwahrnehmung und das Zeitgefühl. Die Ökonomie betrachtet Zeit auch als Wertgegenstand. In den Sprachwissenschaften bedeutet „Zeit“ die grammatische Form der Zeitwörter, das Tempus.
Einführung
Die wohl markanteste Eigenschaft der Zeit ist der Umstand, dass es stets eine in gewissem Sinne aktuelle und ausgezeichnete Stelle zu geben scheint, die wir die Gegenwart nennen, und die sich unaufhaltsam von der Vergangenheit in Richtung Zukunft zu bewegen scheint. Dieses Phänomen wird auch als das Fließen der Zeit bezeichnet. Dieses Fließen entzieht sich jedoch einer naturwissenschaftlichen Betrachtung, wie im Folgenden dargelegt wird. Auch die Geisteswissenschaften können die Frage nicht eindeutig klären.
Die Zeit dient in der Physik in gleicher Weise zur Beschreibung des Geschehens wie der Raum. Die Physik besagt lediglich, dass unter allen denkbaren Strukturen im dreidimensionalen Raum in Kombination mit allen dazu denkbaren zeitlichen Abläufen nur solche beobachtet werden, die den physikalischen Gesetzen gehorchen. Dabei könnte es sich ebenso gut um unbewegliche Strukturen in einem vierdimensionalen Raum handeln, die durch die physikalischen Gesetze bestimmten geometrischen Bedingungen unterworfen sind. Etwas, das man als Fließen der Zeit interpretieren könnte, kommt in der Physik nicht vor. Bei genauer Betrachtung erweist es sich sogar als völlig unklar, wie ein Fließen der Zeit in der Sprache der Physik oder Mathematik oder irgendeiner anderen Wissenschaft präzise beschrieben werden könnte.
So ist beispielsweise die Aussage, dass die Zeit fließe, nur dann sinnvoll, wenn eine davon unterscheidbare Alternative denkbar ist. Die naheliegende Alternative der Vorstellung einer stehenden Zeit beispielsweise führt jedoch zu einem Widerspruch, da sie nur aus der Sicht eines Beobachters denkbar ist, für den die Zeit weiterhin verstreicht, sodass der angenommene Stillstand als solcher überhaupt wahrnehmbar ist (siehe auch Kritik der reinen Vernunft von Immanuel Kant). Könnte man die Zeit anhalten, für wie lange „stünde“ dann die Zeit?
Das scheinbare Fließen der Zeit wird daher von den meisten Physikern und Philosophen als ein rein subjektives Phänomen oder gar als Illusion angesehen. Man nimmt an, dass es sehr eng mit dem Phänomen des Bewusstseins verknüpft ist, das ebenso wie dieses sich einer physikalischen Beschreibung oder gar Erklärung entzieht und zu den größten Rätseln der Naturwissenschaft und Philosophie zählt. Damit wäre unsere Erfahrung von Zeit vergleichbar mit den Qualia in der Philosophie des Bewusstseins und hätte folglich mit der Realität ebenso wenig zu tun wie der phänomenale Bewusstseinsinhalt bei der Wahrnehmung der Farbe Blau mit der zugehörigen Wellenlänge des Lichtes.
Hinfällig wäre damit unsere intuitive Vorstellung, es gäbe eine von der eigenen Person unabhängige Instanz nach Art einer kosmischen Uhr, die bestimmt, welchen Zeitpunkt wir alle im Moment gemeinsam erleben, und die damit die Gegenwart zu einem objektiven uns alle verbindenden Jetzt macht.
Zeit als physikalische Größe
In der Physik ist Zeit (Formelzeichen: t oder τ, von lat. tempus (Zeit)) die fundamentale Größe, über die sich zusammen mit dem Raum die Dauer von Vorgängen und die Reihenfolge von Ereignissen bestimmen lassen. Da sie sich bisher nicht auf grundlegendere Phänomene zurückführen lässt, wird sie über Verfahren zu ihrer Messung definiert, wie es auch bei Raum und Masse der Fall ist. Im SI-Einheitensystem wird Zeit in Sekunden (Einheitenzeichen s) gemessen. Daraus leiten sich unmittelbar die Einheiten Minute und Stunde ab, mittelbar (über die Erdbewegung und gesetzlich festgelegte Schaltsekunden) auch Tag und Woche, dazu (abhängig vom Kalender) Monat, Jahr, Jahrzehnt, Jahrhundert und Jahrtausend.
Zeitmessung
→ Hauptartikel: Zeitmessung
Die Zeitmessung ist eine der ältesten Aufgaben der Astronomie. Dort wird zwischen einem Sonnentag (bürgerliche Zeit) und einem Sterntag unterschieden, welche im Jahr um einen Tag differieren. Der Sonnentag hat keine ganze Anzahl von Sekunden nach SI; der Unterschied wird durch Schaltsekunden ausgeglichen. Diese Probleme führten zur Einführung verschiedener Zeitskalen:
- Ephemeridenzeit (1960), um die Unregelmäßigkeit der Erdrotation auszugleichen;
- TDT (Terrestrial Dynamical Time, „Erd-Atomzeit“) ab 1984; sie ist Basis der SI-Sekunde;
- TCB (Barycentric Coordinate Time), die Eigenzeit des Baryzentrums des Sonnensystems.
- Geocentric Coordinate Time (TCG), die Eigenzeit des Erdmittelpunktes.
Astronomische Daten und Zeiten werden oft zweckmäßig als Julianisches Datum (JD) oder modifiziert als MJD angegeben.
Heute ist die Zeit in der Physik, wie andere Messgrößen auch, operational, das heißt über ein Messverfahren, definiert. Zur Zeitmessung werden hauptsächlich Systeme verwendet, die periodisch in denselben Zustand zurückkehren. Die Zeit wird dann durch das Zählen der Perioden bestimmt. Ein solches Gerät nennt man Uhr. Doch auch monotone Bewegungen können Basis der Zeitmessung sein, z. B. bei den früheren Sand- und Wasseruhren.
Eine Uhr ist umso besser, je genauer der periodische Vorgang reproduzierbar ist und je weniger er sich von äußeren Bedingungen beeinflussen lässt, beispielsweise von mechanischen Störungen, wie der Temperatur oder dem Luftdruck. Daher sind Quarzuhren deutlich präziser als mechanische Uhren. Die genauesten Uhren sind Atomuhren, die auf atomaren Schwingungsprozessen beruhen. Damit ist ein relativer Gangfehler von 10−15 erreichbar, was einer Sekunde Abweichung in 30 Millionen Jahren entspricht. Die Zeit und damit auch die Frequenz, ihr mathematischer Kehrwert, sind die physikalischen Größen, die mit der höchsten Präzision überhaupt messbar sind, was dazu geführt hat, dass die Definition der Länge mittlerweile auf die der Zeit zurückgeführt wird, indem man den Meter als diejenige Strecke definiert, die das Licht im Vakuum während 1/299.792.458 Sekunden zurücklegt.
Newtonsche Physik
Isaac Newton beschreibt das Phänomen der Zeit mit den folgenden Worten:
„Die absolute, wahre und mathematische Zeit verfließt an sich und vermöge ihrer Natur gleichförmig und ohne Beziehung auf irgendeinen äußeren Gegenstand.“
– Isaac Newton: Mathematische Prinzipien der Naturlehre; London 1687
Der Begriff „absolute Zeit“ galt in der Physik bis zur Formulierung der speziellen Relativitätstheorie im Jahre 1905. Er liegt auch heute noch dem menschlichen Alltagsverständnis des Phänomens Zeit zugrunde.
Relativitätstheorie
Durch die Entdeckungen im Zusammenhang mit der Relativitätstheorie musste der newtonsche Begriff der absoluten Zeit aufgegeben werden. So beurteilen Beobachter, die sich relativ zueinander bewegen, zeitliche Abläufe unterschiedlich. Das betrifft sowohl die Gleichzeitigkeit von Ereignissen, die an verschiedenen Orten stattfinden, als auch die Zeitdauer zwischen zwei Treffen zweier Beobachter, die sich zwischen diesen Treffen relativ zueinander bewegen (Zeitdilatation). Da es kein absolut ruhendes Koordinatensystem gibt, ist die Frage, welcher Beobachter die Situation korrekt beurteilt, nicht sinnvoll. Man ordnet daher jedem Beobachter seine sogenannte Eigenzeit zu. Ferner beeinflusst die Anwesenheit von Massen den Ablauf der Zeit, sodass diese an verschiedenen Orten im Gravitationsfeld unterschiedlich schnell verstreicht. Damit ist Newtons Annahme, die Zeit verfließe ohne Bezug auf äußere Gegenstände, nicht mehr haltbar.
Zeit und Raum erscheinen in den Grundgleichungen der Relativitätstheorie fast völlig gleichwertig nebeneinander und lassen sich daher zu einer vierdimensionalen Raumzeit vereinigen. Im dreidimensionalen Raum ist die Wahl der drei Koordinatenachsen willkürlich, sodass Begriffe wie links und rechts, oben und unten, vorne und hinten relativ sind. In der speziellen Relativitätstheorie stellt sich nun heraus, dass auch die Zeitachse nicht absolut ist. So verändern sich mit dem Bewegungszustand eines Beobachters auch die Orientierung seiner Zeit- und Raumachsen in der Raumzeit. Es handelt sich dabei um eine Art Scherbewegung dieser Achsen, die mathematisch mit den Drehungen nahe verwandt ist. Damit lassen sich Raum und Zeit nicht mehr eindeutig trennen, sondern hängen in gewisser Weise voneinander ab. Die Folge sind Phänomene wie Relativität der Gleichzeitigkeit, Zeitdilatation und Längenkontraktion. Diese im Zusammenhang mit der Relativitätstheorie entdeckten Eigenschaften von Zeit und Raum entziehen sich weitgehend der menschlichen Anschauung. Sie sind jedoch mathematisch präzise beschreibbar und – soweit experimentell zugänglich – auch bestens bestätigt. Allerdings lässt sich durch eine Bewegung die Zeitachse nicht umdrehen, das heißt, Vergangenheit und Zukunft lassen sich nicht vertauschen.
Zeit ist in der allgemeinen Relativitätstheorie nicht unbedingt unbegrenzt. So gehen viele Physiker davon aus, dass der Urknall nicht nur der Beginn der Existenz von Materie (Physik) ist, sondern auch den Beginn von Raum und Zeit darstellt. Nach Stephen W. Hawking hat es einen Zeitpunkt eine Sekunde vor dem Urknall ebenso wenig gegeben wie einen Punkt auf der Erde, der 1 km nördlich des Nordpols liegt.
Zeitreisen
→ Hauptartikel: Zeitreise
Die erwähnten relativistischen Effekte lassen sich im Prinzip als Zeitreisen interpretieren. Inwieweit über die Krümmung der Raumzeit und andere Phänomene auch Reisen in die Vergangenheit prinzipiell möglich sind, ist nicht abschließend geklärt. Mögliche Kandidaten sind sogenannte Wurmlöcher, die Bereiche der Raumzeit mit unterschiedlicher Zeit verbinden könnten, ferner spezielle Flugbahnen in der Umgebung eines hinreichend schnell rotierenden Schwarzen Loches und schließlich die Umgebung zweier kosmischer Strings, die hinreichend schnell aneinander vorbei fliegen. Der erforderliche Aufwand für eine praktische Nutzung einer dieser potenziellen Möglichkeiten würde jedoch gegenwärtig die Mittel der Menschheit bei Weitem übersteigen.
Die bei Reisen in die Vergangenheit auftretenden Paradoxien ließen sich im Rahmen der everettschen Vielwelten-Theorie vermeiden. Danach wäre die Vergangenheit, in die man reist, in einer Parallelwelt angesiedelt. Der ursprüngliche Ablauf der Dinge und der durch die Zeitreise modifizierte würden sich beide parallel und unabhängig voneinander abspielen.
Zeitreisen sind ein beliebtes Thema in Literatur und Film → Zeitreise#Zeitreisen in der Literatur und im Film.
Zeit und Kausalität
Der Zeitbegriff hängt eng mit dem Kausalitätsbegriff zusammen. So betrachten wir es als selbstverständlich, dass die Ursache vor ihrer Wirkung auftritt, genauer gesagt wird jeder Beobachter von korrelierten Ereignissen den Vorgang so beschreiben, dass in seinem Modell des Vorgangs die Wirkung durch die Ursache bedingt ist. Die Vergangenheit ist unveränderlich, sie kann nicht von gegenwärtigen Ereignissen beeinflusst werden. Die Zukunft hingegen hängt von der Gegenwart kausal ab, kann also durch Ereignisse oder Handlungen in der Gegenwart beeinflusst werden.
In der Relativitätstheorie wird die zeitliche Reihenfolge mancher Ereignisse, die an verschiedenen Orten stattfinden, von relativ zueinander bewegten Beobachtern unterschiedlich beurteilt. Das ist genau dann der Fall, wenn die beiden Ereignisse nur durch ein Signal mit Überlichtgeschwindigkeit in Kontakt treten könnten. Könnte eine Wechselwirkung mit Überlichtgeschwindigkeit stattfinden, dann könnte man mit folgendem System eine Botschaft in die Vergangenheit schicken:
- Das Signal wird mit Überlichtgeschwindigkeit an eine weit genug entfernte Relaisstation geschickt.
- Diese beschleunigt konventionell vom ursprünglichen Sender weg (alternativ: sie überträgt es konventionell auf eine weitere, sich vom Empfänger weg bewegende Relaisstation, z. B. die andere Seite einer rotierenden Plattform). Dadurch wird das Absendeereignis aus der Vergangenheit in die Zukunft „verschoben“.
- Schließlich wird das Signal wieder mit Überlichtgeschwindigkeit zurückgesendet. Sind die beteiligten Geschwindigkeiten hoch genug, so kommt das Signal vor dem Aussenden des Ursprungssignals an.
Daher wäre das Kausalitätsprinzip verletzt. Mitte des 20. Jahrhunderts wurde vermutet, dass es überlichtschnelle Tachyonen geben könnte. Sollten sie mit gewöhnlicher Materie in Wechselwirkung treten können, so wäre die Kausalität verletzt. Die Hypothese der Existenz von Tachyonen hat daher kaum Anhänger.
Zur Symmetrie der beiden Richtungen der Zeit
Die Gesetze der Physik, die den Grundkräften der Phänomene unseres Alltags zugrunde liegen, sind invariant bezüglich einer Inversion der Zeit. Das bedeutet, dass zu jedem Vorgang, der diesen Gesetzen gehorcht, auch der zeitumgekehrte im Prinzip möglich ist. Diese Aussage steht in krassem Widerspruch zu unserer Alltagserfahrung. Fällt eine Keramiktasse zu Boden, so zerbricht sie in Scherben. Dass sich umgekehrt diese Scherben von selbst wieder zu einer intakten Tasse zusammenfügen, ist dagegen noch nie beobachtet worden. Ein solcher Vorgang stünde jedoch nicht prinzipiell im Widerspruch zu den Naturgesetzen. Er ist lediglich extrem unwahrscheinlich.
Der Hintergrund dieses Umstandes ist eine Wahrscheinlichkeitsüberlegung, die im zweiten Hauptsatz der Thermodynamik formuliert wird. Danach nimmt die Entropie, welche das Maß der Unordnung eines abgeschlossenen Systems angibt, stets zu und damit seine Ordnung ab. Eine vorübergehende Zunahme der Ordnung ist prinzipiell nicht ausgeschlossen, aber je nach Größe mehr oder weniger unwahrscheinlich. Um die spontane Wiedervereinigung von Scherben zu einer Tasse zu provozieren, müsste man eine mehr als astronomische Zahl von Scherbenhaufen anlegen und beobachten.
Der zweite Hauptsatz der Thermodynamik verletzt damit die Symmetrie bezüglich der beiden Richtungen der Zeit. Er lässt sich daher auch nicht aus den Grundgesetzen der Physik herleiten, sondern hat die Eigenschaft eines Postulats. Die beiden Richtungen der Zeit verlieren damit ihre Gleichwertigkeit, und man spricht vom thermodynamischen Zeitpfeil. Er wird als potenzielle Basis für das Fließen der Zeit von der Vergangenheit in die Zukunft angesehen, so wie wir es in unserer Alltagswelt erfahren.
Oft ist in diesem Zusammenhang von einer Umkehrbarkeit oder Unumkehrbarkeit der Zeit die Rede. Dabei handelt es sich jedoch um eine sprachliche und logische Ungenauigkeit. Könnte jemand die Zeit umkehren, dann sähe er sämtliche Vorgänge rückwärts ablaufen. Dieser umgekehrte Lauf der Zeit wäre aber nur aus der Sicht eines Beobachters erkennbar, der einer Art persönlicher Zeit unterworfen ist, die weiterhin unverändert vorwärts läuft. Eine solche Spaltung der Zeit in eine, die einem Experiment oder Gedankenexperiment unterworfen wird, und eine weitere unveränderte, ergibt jedoch keinen Sinn.
Die Gesetze der Physik, die die Phänomene der schwachen und starken Wechselwirkung beschreiben, sind nicht invariant bezüglich einer Zeitumkehr. Zu einem Prozess im Bereich der Kern- und Elementarteilchenphysik ist der zeitumgekehrte daher nicht unbedingt mit den Gesetzen der Physik verträglich. Das CPT-Theorem besagt, dass der Prozess wieder in Einklang mit den Naturgesetzen steht, wenn er nicht nur zeitumgekehrt, sondern zusätzlich spiegelbildlich betrachtet und aus Antimaterie aufgebaut wird. Aus dem CPT-Theorem folgt, dass Prozesse, welche eine sogenannte CP-Verletzung darstellen, wie es bei einigen Teilchenzerfällen der Fall ist, nicht invariant bezüglich einer Zeitumkehr sein können.
Im Formalismus der Beschreibung von Antimaterie sind Antiteilchen gleichwertig zu gewöhnlichen Teilchen, die sich in gewissem Sinne rückwärts in der Zeit bewegen. In diesem Sinne hat die Paarvernichtung von einem Teilchen mit seinem Antiteilchen eine formale Ähnlichkeit mit einem einzigen Teilchen, das sich an dieser Stelle in die Vergangenheit zurückzubewegen beginnt, sodass es dort doppelt und in der Zukunft gar nicht existiert.
Grenzen des physikalischen Zeitbegriffs
Es gibt deutliche Hinweise darauf, dass das Phänomen Zeit im Bereich der Planck-Zeit von 10−43 s seine Eigenschaften als Kontinuum verliert. So führt die konsequente Anwendung der bekannten physikalischen Gesetze zu dem Ergebnis, dass jeder Vorgang, der kürzer ist als die Planck-Zeit, nur einem Objekt zugeordnet werden kann, das sofort zu einem Schwarzen Loch kollabieren muss (siehe Planck-Einheiten). Diese Überlegung zeigt, dass die bekannten physikalischen Gesetze jenseits der Planck-Zeit versagen. Eine Klärung der damit verbundenen Fragen erhofft man sich von einer noch zu entwickelnden Theorie der Quantengravitation, die die beiden fundamentalen Theorien der Physik, die Relativitätstheorie und die Quantenphysik, vereinigen würde. In einer solchen Theorie wäre die Zeit im Bereich der Planck-Zeit möglicherweise quantisiert. So geht man beispielsweise in der Loop-Quantengravitation, einem Kandidaten für die Theorie der Quantengravitation, davon aus, dass das Gefüge der Raumzeit ein vierdimensionales, schaumartiges Spin-Netzwerk darstellt mit „Blasen“ von der Größenordnung der Planck-Einheiten. Allerdings darf man sich diesen „Schaum“ nicht in Raum und Zeit eingebettet vorstellen, sondern der Schaum ist in dieser Theorie Raum und Zeit.
Philosophie
→ Hauptartikel: Philosophie der Zeit
In der Antike haben sich u. a. die Philosophen Platon, Aristoteles und Augustinus mit dem Begriff der Zeit befasst, in der Neuzeit vor allem Newton, Leibniz, Kant, Heidegger und Bergson.
Für Platon haben Raum und Zeit keine Wesenheit, sondern sind nur bewegte Abbilder des eigentlich Seienden (Ideenlehre). Für Aristoteles ist der Zeitbegriff untrennbar an Veränderungen gebunden, Zeit ist das Maß jeder Bewegung und kann nur durch diese gemessen werden. Sie lässt sich in unendlich viele Zeitintervalle einteilen (Kontinuum).
Augustinus unterscheidet erstmals zwischen einer physikalisch exakten (messbaren) und einer subjektiven, erlebnisbezogenen Zeit. Zeit und Raum entstanden erst durch Gottes Schöpfung, für den alles eine Gegenwart ist. Das Geheimnis der Zeit fasst Augustinus in folgendem Ausspruch zusammen:
„Was also ist ‚Zeit‘? Wenn mich niemand danach fragt, weiß ich es; will ich es einem Fragenden erklären, weiß ich es nicht.“ (Confessiones XI, 14)
Für Isaac Newton bilden Zeit und Raum die „Behälter“ für Ereignisse, sie sind für ihn ebenso real wie gegenständliche Objekte: „Zeit ist, und sie tickt gleichmäßig von Moment zu Moment.“ In der Naturphilosophie dominiert Newtons Auffassung, weil sie ermöglicht, Zeit und Raum unabhängig von einem Bezugspunkt oder Beobachter zu beschreiben.
Im Gegensatz dazu meint Gottfried Wilhelm Leibniz, dass Zeit und Raum nur gedankliche Konstruktionen sind, um die Beziehungen zwischen Ereignissen zu beschreiben. Sie haben kein „Wesen“ und es gebe daher auch keinen „Fluss“ der Zeit. Er definiert die Zeit so: „Die Zeit ist die Ordnung des nicht zugleich Existierenden. Sie ist somit die allgemeine Ordnung der Veränderungen, in der nämlich nicht auf die bestimmte Art der Veränderungen gesehen wird.“[1]
Nach Immanuel Kant ist die Zeit ebenso wie der Raum eine „reine Anschauungsform“ des inneren Sinnes. Sie seien unser Zugang zur Welt, gehörten also zu den subjektiv-menschlichen Bedingungen der Welterkenntnis, in deren Form das menschliche Bewusstsein die Sinneseindrücke erlebt.
Kant schreibt ihr jedoch eine empirische Qualität für Zeitmessungen und entfernte Ereignisse zu. Wir können die Zeit aus unserer Erfahrung nicht wegdenken und auch nicht erkennen, ob sie einer – wie auch immer gearteten – Welt an sich zukommt. In ähnlicher Weise beschreibt Martin Heideggers Hauptwerk „Sein und Zeit“ letztere als eine Wirklichkeit, die das Menschsein zutiefst prägt.
Eine dichterische Annäherung an das Wesen der Zeit, die an Augustinus anknüpft, stammt von Michael Ende: „Es gibt ein großes und doch ganz alltägliches Geheimnis. Alle Menschen haben daran teil, jeder kennt es, aber die wenigsten denken je darüber nach. Die meisten Leute nehmen es einfach so hin und wundern sich kein bisschen darüber. Dieses Geheimnis ist die Zeit.“ (Momo, 1973).
Psychologie
→ Hauptartikel: Zeitgefühl, Zeitwahrnehmung, Zeitpräferenz
Zwischen der subjektiv wahrgenommen Zeit und der objektiv messbaren bestehen oft deutliche Differenzen. Die folgenden Abschnitte sollen diese kurz und übersichtlich darstellen.
Die Wahrnehmung der Zeitdauer
Die Wahrnehmung der Zeitdauer hängt davon ab, was in der Zeit passiert. Ein ereignisreicher Zeitraum erscheint kurz, „vergeht wie im Flug“. Hingegen dauern ereignisarme Zeiträume manchmal quälend lange. Von dieser Beobachtung leiten sich auch die Begriffe Kurzweil und Langeweile ab.
Paradoxerweise empfindet man im Rückblick die Zeiten gerade umgekehrt: In ereignisreichen Zeiten hat man viele Informationen eingespeichert, sodass dieser Zeitraum lange erscheint. Umgekehrt erscheinen ereignisarme Zeiten im Rückblick kurz, da kaum Informationen über sie gespeichert sind.
Die Wahrnehmung der Gleichzeitigkeit
Gleichzeitigkeit in der Wahrnehmung ist komplexer, als es auf den ersten Blick den Anschein hat. Es gibt verschiedene Schwellen:
- Die Schwelle, ab der zwei Ereignisse als getrennt erkannt werden, ist vom jeweiligen Sinnesorgan abhängig. So müssen beim Menschen optische Eindrücke 20 bis 30 Millisekunden auseinanderliegen, um zeitlich getrennt zu werden, während für akustische Wahrnehmungen bereits drei Millisekunden ausreichen.
- Die Schwelle, ab der die Reihenfolge zweier Reize unterschieden werden kann, ist unabhängig von der Art der Wahrnehmung etwa 30 bis 40 Millisekunden, richtet sich aber stets nach der langsamsten Reizübertragung.
- Darüber hinaus ist die Wahrnehmung der Gegenwart durch einen Drei-Sekunden-Zeitraum angegeben, dieser Zeitraum wird als Gegenwartsdauer bezeichnet.
Biologie
→ Hauptartikel: Chronobiologie
Fast alle Lebewesen, bis hin zum Einzeller, besitzen eine biologische innere Uhr, die sich mit dem Tag-Nacht-Wechsel und anderen natürlichen Zyklen synchronisiert. Die innere Uhr zum Tagesrhythmus läuft aber auch ohne Tageslicht, wie an Pflanzen in der Dunkelheit gezeigt werden konnte, aber auch an Menschen in Bunker-Experimenten, in denen die freiwilligen Versuchspersonen ohne jeden Hinweis auf äußere Zeitrhythmen lebten. Dabei stellte sich nach einiger Zeit ein konstanter Wach-Schlaf-Rhythmus von im Mittel etwa 25 Stunden ein. Man bezeichnet ihn als circadianen Rhythmus (von lat. circa, ungefähr, und lat. dies, Tag).
Vergleichende Kulturwissenschaft
Die vergleichende Kulturwissenschaft und die philosophische Reflexion darauf führen immer mehr zu der Einsicht, dass es die Zeit als anthropologische Konstante, die allen Menschen gleicherweise zukommt, überhaupt nicht gibt, sondern nur diverse kulturspezifische Zeitauffassungen mit diversen Strukturen, wie die zyklische der Vorsokratiker und der Naturethnien, die sich in der Annahme von der ewigen Wiederkehr des Gleichen dokumentiert, die eschatologische, die einen Anfang hat und auf ein Endziel gerichtet ist und auch die vormoderne Geschichtsauffassung bestimmt, die gradlinig-kontinuierliche, aus der Vergangenheit kommende und über die Gegenwart in die Zukunft gehende, die in der traditionellen Physik zugrunde gelegt wird und die wir heute zumeist als universell unterstellen, die aber ein westliches Kulturprodukt ist, die dilatierende, die sich in jedem Augenblick aufspreizt und die Zeitvorstellung der Quantentheorie zu erklären vermag (s. Everettsche Mehrweltentheorie).
Soziologie und Gesellschaft
→ Hauptartikel: Zeitsoziologie
Zeit in der Literatur
„Menschliche Existenz verwirklicht sich im Entwerfen der Zukunft, im Behalten des Gewesenen und im Entspringenlassen der Gegenwart. Deshalb ist sie vom Prozeß ihrer Zeitigung her zu verstehen. Eine bevorzugte Form des Zeitigens ist das Erzählen. Wann und wie der Vorgang des Zeitigens einsetzt, wie er sich entfaltet und wie er endet – alles das ist Schöpfung des Erzählers.“
– Walter Biemel
- Walter Biemel untersucht in seinem Buch Zeitigung und Romanstruktur. Philosophische Analysen zur Deutung des modernen Romans (Freiburg, München: Alber, 1985; ISBN 3-495-47548-6) am Beispiel der fünf Romane Der Nachsommer von Adalbert Stifter, Madame Bovary von Gustave Flaubert, Der Zauberberg von Thomas Mann, A Fable von William Faulkner und La Casa Verde (Das grüne Haus) von Mario Vargas Llosa die Mannigfaltigkeit des Zeitigens, wobei in jedem Roman ein anderes Schwergewicht, eine andere Wirklichkeitsdeutung sichtbar wird.
- Im Roman Der Zauberberg von Thomas Mann ist die Zeit ein zentrales Motiv, verwoben mit der Leben/Tod-Thematik. In ihm wird u. a. erörtert, inwieweit „Interessantheit und Neuheit des Gehalts die Zeit vertreibe, das heißt: verkürze, während Monotonie und Leere ihren Gang beschwere und hemme“ (kurzfristig). Erörtert wird auch das Problem der „Erzählbarkeit“ von Zeit, des Zusammenhangs zwischen der Dauer eines Berichts und der Länge des Zeitraums, auf den er sich bezieht (Erzählzeit, erzählte Zeit). Die letzten beiden Kapitel raffen sechs für den Romanhelden von Routine und Monotonie geprägte Jahre. Dabei verarbeitet Mann Arthur Schopenhauers, das „zeitlose jetzt“, lat. nunc stans. Der Asymmetrie im Romanaufbau entspricht auf der Erzählebene eine verzerrte Zeitwahrnehmung durch den Protagonisten selbst.
- Im Roman Auf der Suche nach der verlorenen Zeit von Marcel Proust bemerkt der Romanheld, dass die Vergangenheit einzig in seiner Erinnerung bewahrt ist. Er erkennt am Ende seines Lebens, dass ein Roman seiner Erinnerungen die letzte Möglichkeit ist, das Kunstwerk zu schaffen, das er sich vorgenommen hatte. So endet das Buch, indem der Autor beginnt, es zu schreiben. Die „verlorene Zeit“ ist mehrdeutig:
- Zeit, die der Erzähler vergeudet hat,
- Zeit, die unwiederbringlich verloren ist, wenn sie nicht in der Erinnerung oder in einem Kunstwerk konserviert wurde,
- die Erinnerungen oder Imaginationen, die Namen oder Gegenstände hervorrufen.
- „Die Zeit heilt alles, dachte ich, außer die Wahrheit.“ (Carlos Ruiz Zafón: Das Spiel des Engels, Reinbek 2009 S. 408)
- Martin Amis veröffentlichte 1991 seinen Roman Pfeil der Zeit (engl. Time's Arrow), in dem die Zeit ‒ mit allen interessanten Konsequenzen ‒ rückwärts läuft.
- Weitere Gedankenexperimente unternahm Alan Lightman in seinem 1992 erschienenen Roman Und immer wieder die Zeit (engl. Einstein's Dreams); dort verläuft die Zeit nicht gleichmäßig, sondern treibt Kapriolen wie Sprünge, Verzögerungen oder Umkehrungen.
Tempus
→ Hauptartikel: Tempus
Als Tempus bezeichnet man die Zeitform in der Grammatik. In verschiedenen Sprachen gibt es unterschiedliche Zeitformen, die unterschiedlich gebildet werden. In der hochdeutschen Sprache wird die Zeit auf drei Weisen dargestellt.
- Die Zeitform des Verbs erlaubt die Unterscheidung von Gegenwart (Präsens) und Vergangenheit (Präteritum). Beispiel: ich gehe und ich ging.
- Die Angabe von Hilfsverben (haben, sein) erlaubt die Unterscheidung von Vergangenheitsformen wie Perfekt und Plusquamperfekt. Beispiel: ich bin gegangen und ich war gegangen. Außerdem dienen Hilfsverben (hier: werden) zu Darstellung der Zukunft (Futur). Beispiele: Ich werde gehen. Ich werde gegangen sein.
- Möglich ist eine explizite Angabe des Zeitpunktes oder Zeitraumes. Beispiele: Jetzt gehe ich in die Schule. Morgen gehe ich in die Schule. Morgen werde ich in die Schule gehen. Es war gestern: Ich gehe da gerade die Straße entlang, da sehe ich einen Zwanzig-Euro-Schein.
Einen zeitlich anhaltenden Verlauf kann man auch mit Partizip angeben. Beispiel: das fließende Wasser.
Einen Extremfall stellt die umstrittene Behauptung von Benjamin Lee Whorf dar, der in einer Untersuchung der Sprache der Hopi festgestellt haben will, dass die Hopi-Sprache kein Konzept für den Begriff der Zeit besäße. Dies führte zum linguistischen Relativitätsprinzip alias Sapir-Whorf-Hypothese, wonach das Denken von den gesprochenen Sprachen abhängt.
Literatur
Klassiker
- Isaac Newton: Mathematische Prinzipien der Naturlehre. London 1687 (dt. de Gruyter, Berlin 1999). ISBN 3-11-016105-2
- Walther Ch. Zimmerli/Mike Sandbothe (Hrsg.): Klassiker der modernen Zeitphilosophie, 2. Auflage, Darmstadt: Wissenschaftliche Buchgesellschaft 2007.
Wissenschaftsgeschichte
- David Landes: Revolution in Time. Clocks and the Making of the Modern World. Cambridge Mass. und London 1983. (Neuauflage Viking, London 2000). ISBN 0-670-88967-9
- Hans Lenz: Universalgeschichte der Zeit. Marix Verlag, Wiesbaden 2005. ISBN 3-86539-050-1
- Richard Sorabji: Time, Creation and the Continuum, London: Duckworth 1983 Umfassende Darstellung von Zeittheorien von der Antike bis ins Mittelalter, Standardwerk
- Kristen Lippincott: The Story of Time. London 1999.
- Mike Sandbothe: Die Verzeitlichung der Zeit. Grundtendenzen der modernen Zeitdebatte in Philosophie und Wissenschaft, Darmstadt: Wissenschaftliche Buchgesellschaft 1998.
- Karen Gloy: Philosophiegeschichte der Zeit, München: Fink Verlag 2008, ISBN 978-3-7705-4671-8
Naturphilosophie
- Hans Michael Baumgartner (Hrsg.): Zeitbegriffe und Zeiterfahrung. Grenzfragen (Naturwissenschaft, Philosophie, Theologie) Band 21. Alber, Freiburg / München 1994. ISBN 3-495-47799-3
- Antje Gimmler/ Mike Sandbothe/ Walther Ch. Zimmerli (Hrsg.): Die Wiederentdeckung der Zeit. Reflexionen-Analysen-Konzepte, Darmstadt: Primus 1997.
- Gottfried Heinemann (Hrsg.): Zeitbegriffe. Ergebnisse des interdisziplinären Symposiums „Zeitbegriff der Naturwissenschaften, Zeiterfahrung und Zeitbewußtsein“ (Kassel 1983). Alber, Freiburg/ München 1986. ISBN 3-495-47596-6
- Olaf Georg Klein: Zeit als Lebenskunst, Verlag Klaus Wagenbach, Berlin 2007 (geb.); 2010 (Taschenbuchausgabe WAT632), ISBN 978-3-8031-2632-0
- Hans Reichenbach: Philosophie der Raum-Zeit-Lehre. de Gruyter, Berlin & Leipzig 1928. (Neuaufl. Braunschweig 1977). ISBN 3-528-08362-X
- Ewald Richter: Ursprüngliche und physikalische Zeit, Duncker & Humblot, Berlin 1996, ISBN 3-428-08522-1.
- Craig Callender: The Oxford handbook of philosophy of time. Oxford University Press, Oxford 2011, ISBN 978-0-19-929820-4
Kulturwissenschaften
- Lothar Baier: Keine Zeit – 18 Versuche über die Beschleunigung Antje Kunstmann Verlag, München 2000, ISBN 9783888972492
- Johanna J. Danis: Psychosymbolik der Zeit, München: Edition Psychosymbolik 1993, ISBN 978-3-925350-49-8
- Andreas Deußer / Marian Nebelin (Hrsg.): Was ist Zeit? Philosophische und geschichtstheoretische Aufsätze, LIT Verlag, Berlin 2009, ISBN 978-3-8258-1874-6
- Karen Gloy: Zeit. Eine Morphologie, Freiburg, München: Alber Verlag 2005, ISBN 978-3-495-48200-1
- Gerda Kasakos: Zeitperspektive, Planungsverhalten und Sozialisation, Juventa Verlag, München 1971; ISBN 3-7799-0602-3
- Robert Levine: Eine Landkarte der Zeit. Wie Kulturen mit Zeit umgehen, Piper, München 1998, ISBN 978-3-492-22978-4
- Mike Sandbothe/ Walther Ch. Zimmerli (Hrsg.): Zeit-Medien-Wahrnehmung, Darmstadt: Wissenschaftliche Buchgesellschaft 1994.
- Christian W. Thomsen und Hans Holländer (Hrsg.): Augenblick und Zeitpunkt. Studien zur Zeitstruktur und Zeitmetaphorik in Kunst und Wissenschaften. Wissenschaftliche Buchgesellschaft, Darmstadt 1984. ISBN 3-534-09669-X
- Rudolf Wendorff: Zeit und Kultur. Geschichte des Zeitbewußtseins in Europa. Westdt. Verl., Wiesbaden 1980. ISBN 3-531-11515-4
Populäre Literatur zur modernen Physik
- John D. Barrow: Der Ursprung des Universums. Wie Raum, Zeit und Materie entstanden. Goldmann, München 2000. ISBN 3-442-15061-2
- John D. Barrow: Die Natur der Natur. Wissen an den Grenzen von Raum und Zeit. Spektrum, Heidelberg 1993. ISBN 3-86025-029-9
- Martin Bojowald: Zurück vor den Urknall − Die ganze Geschichte des Universums, S.Fischer Vlg., Frankfurt am Main 2009, ISBN 978-3-10-003910-1
- Brian Greene: Der Stoff, aus dem der Kosmos ist − Raum, Zeit und die Beschaffenheit der Wirklichkeit, Goldmann Vlg., München 2008, ISBN 978-3-442-15487-6
- Julius T. Fraser: Die Zeit. Auf den Spuren eines vertrauten und doch fremden Phänomens. dtv, München 1993. ISBN 3-423-30023-X
- Ernst von Glasersfeld: Konzeptuelle Zeitkonstruktion, in: Leon R. Tsvasman (Hg.): Das große Lexikon Medien und Kommunikation. Kompendium interdisziplinärer Konzepte. Würzburg 2006. ISBN 3-89913-515-6
- Stephen W. Hawking: Die illustrierte Kurze Geschichte der Zeit. Rowohlt, Reinbek bei Hamburg 2002. ISBN 3-499-61487-1
- Griffiths Jay: Slow Motion – Lob der Langsamkeit, Aufbau Taschenbuchverlag, ISBN 3-7466-8090-5
- Wolfgang Kaempfer: Die Zeit und die Uhren. Insel, Frankfurt am Main und Leipzig 1991. ISBN 3-458-16207-0
- Stefan Klein: Zeit. Der Stoff aus dem das Leben ist. S. Fischer, Frankfurt 2006, ISBN 3-10-039610-3
- Ilya Prigogine: Vom Sein zum Werden. Zeit und Komplexität in den Naturwissenschaften. Pieper, München 1988, 1992 (6. Aufl.). ISBN 3-492-02943-4
- Carlo Rovelli, What is time? What is space?, Di Renzo Editore, 2006, ISBN 88-8323-146-5
- Kip S. Thorne: Gekrümmter Raum und verbogene Zeit. Einsteins Vermächtnis. Bechtermünz, Augsburg 1999. ISBN 3-8289-3400-5
- Rüdiger Vaas: Hawkings neues Universum − Wie es zum Urknall kam, Banderolen-Titelergänzung: Raum, Zeit und Ewigkeit: Hawkings neueste Erkenntnisse verstehen, Franckh-Kosmos Vlg. Stuttgart 2008, ISBN 978-3-440-11378-3
- Gerald J. Whitrow: Die Erfindung der Zeit. Junius, Hamburg 1991. ISBN 3-88506-183-X
- Zeit ist nur eine Illusion. In: bild der wissenschaft, 1 / 2008, S. 46–63 (zusammenfassender Artikel zum gegenwärtigen Diskussionsstand in der Physik.)
Weblinks
- Literatur zum Schlagwort Zeit im Katalog der Deutschen Nationalbibliothek
- Was ist Zeit? aus der Fernseh-Sendereihe alpha-Centauri. Erstmalig ausgestrahlt am 4. Mär. 2001.
- Ned Markosian: Time. In: Edward N. Zalta (Hrsg.): Stanford Encyclopedia of Philosophy
- Milic Capek: „Time“ im Dictionary of the History of Ideas (englisch, inkl. Literaturangaben)
- Bradley Dowden: Time in der Internet Encyclopedia of Philosophy (englisch, inklusive Literaturangaben)
- Zeit Albert Einstein 1929, Einstein Archives Online
- Warum gibt es die Zeit? Physikalisch-Technische Bundesanstalt, abgerufen am 17. Oktober 2011
- Was ist physikalische Zeit? Amüsant geschriebenes philosophisches Essay
Spezielleres
- Was ist Gleichzeitigkeit? aus der Fernseh-Sendereihe alpha-Centauri. Erstmalig ausgestrahlt am 10. Juni 2001.
- Was war der Äther? aus der Fernseh-Sendereihe alpha-Centauri. Erstmalig ausgestrahlt am 4. Feb. 2004.
- Was ist Zeit in der SRT? aus der Fernseh-Sendereihe alpha-Centauri. Erstmalig ausgestrahlt am 5. Juli 2006.
- A Walk Through Time National Institute of Standards and Technology, nist.gov,abgerufen am 12. März 2012.
Einzelnachweise
- ↑ Das Zitat stammt aus Gottfried Wilhelm Leibniz: „Die metaphysischen Anfängen der Mathematik“ in "Handschriften zur Grundlage der Philosophie" II, S. 35 ff. Zitiert aus: "Leibniz Zitate" von Annette Antoine und Annette von Bötticher, Matrix Media Verlag Göttingen 2007.