Lithiumiodid

Erweiterte Suche

Kristallstruktur
Struktur von Lithiumiodid
__ Li+     __ I
Kristallsystem

kubisch

Raumgruppe

$ Fm\bar{3}m $

Koordinationszahlen

Li[6], I[6]

Allgemeines
Name Lithiumiodid
Andere Namen

Lithiumjodid

Verhältnisformel LiI
CAS-Nummer
  • 10377-51-2 (wasserfrei)
  • 17023-25-5 (Hydrat)
Kurzbeschreibung

beigefarbener, geruchsloser Feststoff[1]

Eigenschaften
Molare Masse 133,85 g·mol−1
Aggregatzustand

fest

Dichte

3,49 g·cm−3[1]

Schmelzpunkt

446 °C[1]

Siedepunkt

1180 °C[1]

Löslichkeit
  • sehr gut in Wasser (1650 g·l−1 bei 20 °C)[1]
  • sehr gut in Ethanol [2]
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [1]
07 – Achtung 08 – Gesundheitsgefährdend

Gefahr

H- und P-Sätze H: 315-319-335
P: 261-​302+352-​305+351+338-​321-​405-​501Vorlage:P-Sätze/Wartung/mehr als 5 Sätze [1]
EU-Gefahrstoffkennzeichnung [3][1]
Giftig
Giftig
(T)
R- und S-Sätze R: 61-36/37/38
S: 22-26
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche nicht möglich

Lithiumiodid, LiI, ist das Lithiumsalz der Iodwasserstoffsäure. Neben dem wasserfreien Lithiumiodid existieren noch verschiedene Hydrate, bekannt sind LiI·nH2O mit n= 0,5, 1, 2 und 3.[4]

Gewinnung und Darstellung

Die Herstellung von Lithiumiodid erfolgt durch Umsetzung wässriger Lithiumhydroxid- oder Lithiumcarbonatlösungen mit Iodwasserstoff und anschließender Aufkonzentrierung und Trocknung.[4]

$ \mathrm{LiOH + \ HI \longrightarrow \ LiI +\ H_2O} $
$ \mathrm{Li_2CO_3 + 2 \ HI \longrightarrow 2 \ LiI +\ H_2O +\ CO_2} $

Das wasserfreie Lithiumiodid kann auch durch Reaktion von Lithiumhydrid mit Iod in wasserfreiem Diethylether hergestellt werden.[5]

$ \mathrm{LiH + I_2 \longrightarrow \ LiI +\ HI} $

Eigenschaften

Lithiumiodid bildet farblose, stark hygroskopische Kristalle mit einem Schmelzpunkt von 446 °C, einem Siedepunkt von 1180 °C und einer Dichte von 3,49 g·cm−3. Die molare Masse des wasserfreien Lithiumiodids beträgt 133,85 g/mol. Durch die Oxidation von Iodid zu Iod durch Luftsauerstoff färben sich die Kristalle schnell gelblich bis bräunlich.[4]

Das Trihydrat weist einen Schmelzpunkt von 72 °C auf. Beim Erhitzen verliert es bei 80 °C zwei Moleküle Kristallwasser und bei 300 °C ein Molekül Kristallwasser.[6] Lithiumiodid ist gut in Wasser (1650 g/l Wasser bei 20 °C) und Ethanol löslich.

Die Standardbildungsenthalpie des kristallinen Lithiumiodids beträgt ΔfH0298 = -270,08 kJ/mol.[7]

Verwendung

Das wasserfreie Lithiumiodid wird für organische Synthesen verwendet[4], in Batterien dient es als Elektrolyt.[8] Dotierte Kristalle dienen als Szintillationsdetektor für langsame Neutronen.[9]

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 Eintrag zu Lithiumiodid in der GESTIS-Stoffdatenbank des IFA, abgerufen am 04.08.2008 (JavaScript erforderlich)
  2. G. Milne: Gardner's Commercially Important Chemicals: Synonyms, Trade Names, and Properties. S. 370, Wiley-IEEE, 2005, ISBN 9780471736615.
  3. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  4. 4,0 4,1 4,2 4,3 A. F. Holleman, E. Wiberg, N. Wiberg, Lehrbuch der Anorganischen Chemie 1995, 101. Auflage, de Gruyter. ISBN 3-11-012641-9, S. 1151–1152.
  5. M. D.Taylor, L. R. Grant: New Preparations of Anhydrous Iodides of Groups I and II Metals, in: J. Am. Chem. Soc. 1955, 77, 1507–1508
  6. G. F. Hüttig, F. Pohle: Studien zur Chemie des Lithiums. II. Über die Hydrate des Lithiumjodids, in: Z. anorg. allg. Chem. 1924, 138, 1–12.
  7. Dissertation: "Untersuchung organischer Festkörperreaktionen am Beispiel von Substitutions- und Polykondensationsreaktionen", Oliver Herzberg, Universität Hamburg 2000. Volltext
  8. L. F. Trueb, P. Rüetschi: Batterien und Akkumulatoren - Mobile Energiequellen für heute und morgen., Springer, Berlin 1998 ISBN 3-540-62997-1.
  9. K. P. Nicholson: Some lithium iodide phosphors for slow neutron detection, in: J. Appl. Phys. 1955 , 6, 104–106.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

25.11.2021
Sonnensysteme | Exoplaneten
Wenig Kollisionsgefahr im Planetensystem TRAPPIST-1
Sieben erdgrosse Planeten umkreisen den Stern TRAPPIST-1 in nahezu perfekter Harmonie.
23.11.2021
Optik
„Maßgeschneidertes“ Licht
Ein Forscherteam entwickelt erstmals ein Lichtfeld, welches die Struktur des vierdimensionalen Raums widerspiegelt.
15.11.2021
Schwarze Löcher
Woher kommt das Gold?
Wie werden chemische Elemente in unserem Universum produziert?
08.11.2021
Teilchenphysik
Neue Einblicke in die Struktur des Neutrons
Sämtliche bekannte Atomkerne und damit fast die gesamte sichtbare Materie bestehen aus Protonen und Neutronen – und doch sind viele Eigenschaften dieser allgegenwärtigen Bausteine der Natur noch nicht verstanden.
08.11.2021
Physikdidaktik | Strömungsmechanik
Warum Teekannen immer tropfen
Strömungsmechanische Analysen der TU Wien beantworten eine alte Frage: Wie kommt es zum sogenannten „Teapot-Effekt“?
05.11.2021
Teilchenphysik | Thermodynamik
Elektronen-Familie erzeugt bisher unbekannten Aggregatzustand
Ein internationales Forschungsteam des Exzellenzclusters ct.
04.11.2021
Galaxien | Schwarze Löcher
Jet der Riesengalaxie M87
In verschiedenen Wellenlängen lässt sich ein gigantischer Teilchenstrahl beobachten, der von der Riesengalaxie M87 ausgestoßen wird.
04.11.2021
Galaxien
Am weitesten entfernter Nachweis von Fluor in sternbildender Galaxie
Eine neue Entdeckung gibt Aufschluss darüber, wie Fluor – ein Element, das in unseren Knochen und Zähnen als Fluorid vorkommt – im Universum entsteht.
02.11.2021
Monde | Kometen und Asteroiden
Planetologen erforschen schweres Bombardement des Mondes vor 3,9 Milliarden Jahren
Der Mond war vor 3,9 Milliarden Jahren einem schweren Bombardement mit Asteroiden ausgesetzt.
29.11.2021
Optik | Quantenoptik
Nur durch Billiardstel Sekunden getrennt
Ultrakurze Lichtblitze dauern weniger als eine Billiardstel Sekunde und haben eine wachsende technologische Bedeutung.