Wilkinson-Katalysator

Erweiterte Suche

Strukturformel
Strukturformel des Wilkinson-Katalysators
Ph = Phenyl
Allgemeines
Name Wilkinson-Katalysator
Andere Namen

Chlorotris(triphenylphosphin)
rhodium(I) (IUPAC)

Summenformel C54H45ClP3Rh
CAS-Nummer 14694-95-2
Kurzbeschreibung

dunkelroter, geruchloser, Feststoff[1]

Eigenschaften
Molare Masse 925,24 g·mol−1
Aggregatzustand

fest

Schmelzpunkt

157 °C[1]

Löslichkeit

schlecht in Wasser[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [2]
keine GHS-Piktogramme
H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Der Wilkinson-Katalysator ist ein in der organischen Chemie verwendeter Homogenkatalysator mit der Summenformel C54H45ClP3Rh. Es handelt sich hierbei um einen Rhodiumkomplex, der zur Hydrierung, Hydroformylierung, Hydrosilylierung und zur Isomerisierung von Allylgruppen zu Propenylgruppen Anwendung findet. Der Wilkinson-Katalysator ist nach seinem Entwickler, dem Nobelpreisträger Geoffrey Wilkinson, benannt.

Struktur und Synthese

Beim Wilkinson-Katalysator handelt es sich um einen quadratisch-planaren Rhodium(I)-komplex, der einen Chloro- und drei Triphenylphosphin-Liganden (PPh3) trägt. Es handelt sich um einen 16-Valenzelektronenkomplex. Er lässt sich durch Substitution von Triphenylphosphan an Rhodium(III)-chlorid in siedendem Ethanol synthetisieren. Ethanol wirkt hierbei sowohl als Lösungsmittel als auch als Reduktionsmittel (Reduktion von Rh(III) zu (Rh(I)).[3]

$ \mathrm{RhCl_3(H_2O)_3 + CH_3CH_2OH + 3 \ PPh_3 \longrightarrow} $

$ \mathrm{RhCl{(PPh_3)}_{3} + CH_3CHO + 2 \ HCl + 3 \ H_2O} $

Katalysezyklus

Die Wilkinson-Hydrierung wird zur Hydrierung von Alkenen mit Wasserstoff genutzt. Entscheidend ist hierbei die Labilität der gebundenen Phosphinliganden, durch deren Abspaltung freie Koordinationsstellen geschaffen werden. Im ersten Schritt spaltet sich ein Phosphinligand vom Katalysator ab. Dann addiert Wasserstoff oxidativ an die zuvor gebildete trigonal-planare 14-Valenzelektronenspezies. Hierbei bildet sich ein trigonal-bipyramidale Komplex. Die Oxidationsstufe ändert sich von I auf III. Das eingesetzte Alken koordiniert dann zunächst side-on am Metall. Anschließend findet die Insertion des Alkens unter Hydrierung statt. Es bildet sich wieder ein trigonal-bipyramidaler Komplex, der nun einen end-on-gebundenen Alkylrest trägt. Die Hydrierung durch den zweiten gebundenen Wasserstoff führt letztlich zur Abspaltung (reduktive Eliminierung) des Alkans unter Rückbildung der Katalysatorspezies.[4]

Katalysezyklus der Wilkinson-Hydrierung

Durch den Wilkinson-Katalysator können selektiv endständige Doppelbindungen hydriert werden. Die Reaktion läuft an diesen so viel schneller ab, dass eine weitere im Molekül vorhandene nicht-endständige Doppelbindung nicht angegriffen wird. Bei sterisch anspruchsvollen Substituenten an der Doppelbindung sowie bei vierfach substituierten Doppelbindungen findet meist überhaupt keine Hydrierung statt.

Sterische Hinderung bei der Hydrierung mit einem Wilkinson-Katalysator

Asymmetrische Hydrierungen

Der Wilkinson-Katalysator kann auch zur asymmetrischen Synthese chiraler Produkte eingesetzt werden. Hierzu werden anstelle der achiralen Triphenylphosphinliganden chirale Phosphine wie beispielsweise DIPAMP oder DIOP verwendet. So kann beispielsweise das Chiralitätszentrum des medizinisch wichtigen Aminosäure L-DOPA über eine asymmetrische Wilkinson-Hydrierung mit DIPAMP als chiralem Ligand aufgebaut werden.[5]

Asymmetrische Hydrierung mit dem Wilkinson-Katalysator

Weblinks

 Commons: Wilkinson-Katalysator – Sammlung von Bildern, Videos und Audiodateien
Vorlage:Commonscat/WikiData/Difference

Einzelnachweise

  1. 1,0 1,1 1,2 Eintrag zu CAS-Nr. 14694-95-2 in der GESTIS-Stoffdatenbank des IFA, abgerufen am 2.12.2007 (JavaScript erforderlich)
  2. Datenblatt Tris(triphenylphosphine)rhodium(I) chloride bei Sigma-Aldrich, abgerufen am 29. Mai 2011.
  3. J. A. Osborn, F.H. Jardine,J. F. Young, G. Wilkinson, Journal of the Chemical Society A. 1966, S. 1711-1732
  4. Beyer/Walter: Lehrbuch der Organischen Chemie. Hirzel Verlag, 23. Auflage. 1998, S. 406f.
  5. Christen und Fritz Vögtle: Organische Chemie Bd. 2, Otto Salle Verlag, 2. Auflage, 1996, S. 411.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

16.10.2021
Planeten | Elektrodynamik | Thermodynamik
Neues von den ungewöhnlichen Magnetfeldern von Uranus und Neptun
Tausende Grad heißes Eis - Wie es bei millionenfachem Atmosphärendruck entsteht und warum dieses leitende superionische Eis bei der Erklärung der ungewöhnlichen Magnetfelder der Gasplaneten Uranus und Neptun hilft.
14.10.2021
Elektrodynamik | Quantenphysik
Exotische Magnetzustände in kleinster Dimension
Einem internationalen Forscherteam gelang es erstmals, Quanten-Spinketten aus Kohlenstoff zu bauen.
15.10.2021
Sterne
Magentische Kräfte der Sonne: schnellere geladene Teilchen beobachtet
Protuberanzen schweben als riesige Wolken über der Sonne, gehalten von einem Stützgerüst aus magnetischen Kraftlinien, deren Fußpunkte in tiefen Sonnenschichten verankert sind.
14.10.2021
Planeten | Sterne
Der Planet fällt nicht weit vom Stern
Ein Zusammenhang zwischen der Zusammensetzung von Planeten und ihrem jeweiligen Wirtsstern wurde in der Astronomie schon lange vermutet.
12.10.2021
Kometen und Asteroiden
Lerne die 42 kennen: Einige der größten Asteroiden fotografiert
Mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) in Chile haben Astronom:innen 42 der größten Objekte im Asteroidengürtel zwischen Mars und Jupiter abgelichtet.
06.10.2021
Elektrodynamik | Festkörperphysik
Forschungsteam beobachtet eigenes Magnetfeld bei Doppellagen-Graphen
Normalerweise hängt der elektrische Widerstand eines Materials stark von dessen Abmessungen und elementarer Beschaffenheit ab.
05.10.2021
Festkörperphysik | Quantenphysik
Neue Art von Magnetismus in Kult-Material entdeckt
Ein internationales Wissenschaftsteam macht eine wegweisende Entdeckung in Strontiumruthenat.
30.09.2021
Kometen_und_Asteroiden | Planeten
Bombardement von Planeten im frühen Sonnensystem
Vesta, der größte Asteroid unseres Sonnensystems, war sehr viel früher einer umfangreichen Einschlagserie großer Gesteinskörper ausgesetzt als bislang angenommen.
30.09.2021
Plasmaphysik | Teilchenphysik
Strahldiagnostik für zukünftige Beschleuniger im Tischformat
Seit Jahrzehnten wurden Teilchenbeschleuniger immer größer - Seit einigen Jahren gibt es jedoch eine Alternative: „Teilchenbeschleuniger im Tischformat“, die auf der Laseranregung von Kielwellen in Plasmen (laser wakefield) basieren.
24.09.2021
Quantenoptik
Winzige Laser, die wie einer zusammenwirken
Israelische und deutsche Forscher:innen des Exzellenzclusters ct.