Photon

Erweiterte Suche

(Weitergeleitet von Lichtquantenhypothese)
Dieser Artikel behandelt das Teilchen Photon; für weitere Bedeutungen siehe Photon (Begriffsklärung).


Photon

Klassifikation
Elementarteilchen
Boson
Eichboson
Eigenschaften
Ladung neutral
Masse kg
eV/c2
SpinParität 1-
Wechselwirkung elektromagnetisch

Das Photon (von Griechisch φῶς phōs, Gen. φωτός phōtosLicht“) ist die elementare Anregung (Quant) des quantisierten elektromagnetischen Feldes. Anschaulich gesprochen sind Photonen das, woraus elektromagnetische Strahlung besteht, daher wird gelegentlich auch die Bezeichnung Lichtteilchen verwendet. In der Quantenelektrodynamik gehört das Photon als Vermittler der elektromagnetischen Wechselwirkung zu den Eichbosonen.

Forschungsgeschichte

Seit der Antike gab es verschiedene, sich teilweise widersprechende Vorstellungen von der Natur des Lichts. Im 19. Jahrhundert konkurrierten Wellen- und Teilchentheorien. Während viele Phänomene wie Interferenz- und Polarisationserscheinungen für eine Wellennatur des Lichts sprachen, gab es auch Indizien für einen Teilchencharakter. Ein historisch sehr wichtiges Experiment, welches auf eine Teilchennatur des Lichts hinwies, war im Jahre 1887 die Beobachtung des Photoelektrischen Effekts durch Heinrich Hertz und Wilhelm Hallwachs.

Die Quantisierung der elektromagnetischen Strahlung geht letztendlich auf die Erklärung der Schwarzkörperstrahlung durch Max Planck im Jahr 1900 zurück (plancksches Strahlungsgesetz). Planck selbst stellte sich allerdings nicht die elektromagnetische Strahlung an sich quantisiert vor, sondern erklärte die Quantisierung damit, dass die Oszillatoren in den Wänden der Schwarzkörperresonatoren nur diskrete Energiemengen mit dem elektromagnetischen Feld austauschen können.

Albert Einstein stellte 1905 in seiner Publikation zum photoelektrischen Effekt die Lichtquantenhypothese auf. Ihr zufolge ist die Energie des Lichts in zur Frequenz proportionalen Einheiten gequantelt, diese „in Raumpunkten lokalisierten Energiequanten, welche sich bewegen ohne sich zu teilen und nur als Ganze absorbiert und erzeugt werden können“[1] nennt man später auch Photonen. Für diese Arbeit wurde Einstein 1921 mit dem Nobelpreis ausgezeichnet. Die formale Quantentheorie des Lichtes wurde erst seit 1925 beginnend mit Arbeiten von Max Born, Pascual Jordan und Werner Heisenberg entwickelt. Die bis heute gültige Theorie der elektromagnetischen Strahlung, welche auch die Lichtquanten beschreibt, die Quantenelektrodynamik (QED), geht in ihren Anfängen auf eine Arbeit von Paul Dirac im Jahr 1927 zurück, in der er die Wechselwirkung von quantisierter elektromagnetischer Strahlung mit einem Atom beschreibt. Die QED wurde in den 1940er Jahren entwickelt und 1965 mit der Verleihung des Nobelpreises für Physik an Richard P. Feynman, Julian Schwinger und Shinichirō Tomonaga gewürdigt.

Der Begriff Photon wurde 1926 durch den Chemiker Gilbert Newton Lewis in einem Aufsatz in Nature für die elementare Anregung des quantisierten elektromagnetischen Feldes eingeführt.[2] Er verwandte den Begriff im Rahmen eines von ihm vorgeschlagenen (und allgemein nicht anerkannten) Modells der Wechselwirkung von Atomen mit Licht.

In einem Brief an Michele Besso (1873–1955) schrieb Albert Einstein im Jahr 1951: „Die ganzen 50 Jahre bewusster Grübelei haben mich der Antwort der Frage ‚Was sind Lichtquanten‘ nicht näher gebracht. Heute glaubt zwar jeder Lump, er wisse es, aber er täuscht sich...

Symbol

Für das Photon wird im Allgemeinen das Symbol $ \ \gamma $ (gamma) verwendet. In der Hochenergiephysik ist dieses Symbol allerdings reserviert für die hochenergetischen Photonen der Gammastrahlung (Gamma-Quanten), und die in diesem Zweig der Physik ebenfalls relevanten Röntgenphotonen erhalten das Symbol X (von X-Strahlen und Englisch: X-ray).

Sehr oft wird ein Photon auch durch die enthaltene Energie $ E $ dargestellt:

  • $ E_{\text{photon}}=h\,\nu $
mit dem planckschen Wirkungsquantum $ \,h $ und der (Licht-)Frequenz $ \,\nu $

bzw.

  • $ E_{\text{photon}}=\hbar \,\omega $
mit dem reduzierten planckschen Wirkungsquantum $ \hbar ={\frac {h}{2\pi }} $ und der (Licht-)Kreisfrequenz $ \,\omega =2\pi \,\nu $.

Eigenschaften

Jegliche elektromagnetische Strahlung, von Radiowellen bis zur Gammastrahlung, ist in Photonen quantisiert. Das bedeutet, die kleinste Menge an elektromagnetischer Strahlung beliebiger Frequenz ist ein Photon. Photonen haben eine unendliche natürliche Lebensdauer, können aber bei einer Vielzahl physikalischer Prozesse erzeugt oder vernichtet werden. Ein Photon besitzt keine Masse. Daraus folgt, dass es sich immer mit Lichtgeschwindigkeit $ c $ bewegt. In optischen Medien ist die Gruppengeschwindigkeit im Vergleich zur Vakuumlichtgeschwindigkeit aufgrund der Wechselwirkung der Photonen mit der Materie (ausgedrückt durch den Brechungsindex $ n $) verringert, die Phasengeschwindigkeit kann sogar höher als $ c $ sein.

Erzeugung und Detektion

Photonen können auf vielerlei Arten erzeugt werden, insbesondere durch Übergänge („Quantensprünge“) von Elektronen zwischen verschiedenen Zuständen (z. B. verschiedenen Atom- oder Molekülorbitalen oder Energiebändern in einem Festkörper). Photonen können auch bei nuklearen Übergängen, Teilchen-Antiteilchen-Vernichtungsreaktionen (Annihilation) oder durch beliebige Fluktuationen in einem elektromagnetischen Feld erzeugt werden.

Zum Nachweis von Photonenströmen können unter anderem Photomultiplier, Photoleiter oder Photodioden verwendet werden. CCDs, Vidicons, PSDs, Quadrantendioden oder Foto-Platten und Filme werden zur ortsauflösenden Detektion von Photonen benutzt. Im IR-Bereich werden auch Bolometer eingesetzt. Photonen im Gammastrahlen-Bereich können durch Geigerzähler einzeln nachgewiesen werden. Photomultiplier und Avalanche-Photodioden können auch zur Einzelphotonendetektion im optischen Bereich verwendet werden, wobei Photomultiplier im Allgemeinen die niedrigere Dunkelzählrate besitzen, Avalanche-Photodioden aber noch bei niedrigeren Photonenenergien bis in den IR-Bereich einsetzbar sind.

Masse

Photonen haben keine Masse. Dies manifestiert sich in den Maxwellgleichungen dadurch, dass die Komponenten des elektrischen Feldes im Vakuum die Wellengleichung

$ {\frac {1}{c^{2}}}{\frac {\partial ^{2}E_{i}}{\partial t^{2}}}-\sum _{j=1}^{n}\left({\frac {\partial ^{2}E_{i}}{\partial x_{j}^{2}}}\right)=\Box E_{i}=0 $

erfüllen. Diese Wellengleichung ist für jede Komponente der elektrischen Feldstärke $ {\vec {E}} $ (und auch der magnetischen Flussdichte $ {\vec {B}} $) der Spezialfall der Klein-Gordon-Gleichung für masselose Felder bzw. Teilchen. Die Phasengeschwindigkeit $ c $ ist dabei die Lichtgeschwindigkeit.

Ferner lässt die Gestalt der Maxwellgleichungen zu, elektrische und magnetische Potentiale (Eichfelder) zu definieren. Für Wechselwirkungsteilchen mit nicht verschwindender Masse ergäbe sich dann kein Coulomb-Potential, sondern ein Yukawa-Potential. Das Potential einer elektrischen Ladung wäre also mit einem zusätzlichen exponentiellen Dämpfungsterm abgeschwächt.

Weiterhin würde eine Photonmasse das Verhalten von Magnetfeldern ändern[3] Solche Abweichungen konnten bislang nicht experimentell nachgewiesen werden, woraus sich die momentan (Stand 2009) bestehenden Obergrenzen für die Photonmasse ergeben.[4]

Umgekehrt kann man auch aus der relativistischen Energie-Impuls-Relation $ E={\sqrt {(m_{0}c^{2})^{2}+(pc)^{2}}} $ für $ m_{0}=0 $ sofort sehen, dass masselose Teilchenbahnen lichtartig sind:

$ v={\frac {\mathrm {d} E}{\mathrm {d} p}}={\frac {\mathrm {d} (pc)}{\mathrm {d} p}}=c $

Spin

Photonen sind Spin-1-Teilchen und somit Bosonen. Es können also beliebig viele Photonen denselben quantenmechanischen Zustand besetzen, was zum Beispiel in einem Laser realisiert wird.

Während etwa der Elektronenspin parallel oder antiparallel zu einer beliebig vorgegebenen Richtung ist[5], kann der Photonenspin wegen fehlender Masse nur parallel oder antiparallel zur Flugrichtung orientiert sein. Die Helizität des Photons ist daher eine charakteristische Größe. Dennoch kann auch ein einzelnes Photon linear polarisiert werden, indem zwei entgegengesetzt zirkular polarisierte Zustände überlagert werden.

Photonen im Vakuum

Im Vakuum bewegen sich Photonen mit der Vakuumlichtgeschwindigkeit $ c=299\,792\,458\;\mathrm {m/s} $. Die Dispersionsrelation, d. h. die Abhängigkeit der Energie $ E\, $ von der Frequenz $ \nu $ (ny), ist linear, und die Proportionalitätskonstante ist das Plancksche Wirkungsquantum $ h $,

$ E=pc=h\nu \,. $

Zahlenwerte, wie sie in optischen Spektren typischerweise auftreten, können wie folgt ermittelt werden:[6][7]

$ E=\hbar \omega =(6{,}582\,119\,28\cdot 10^{-16}\,{\rm {{eVs})\cdot \omega }} $ ,  E dabei in eV (Elektronenvolt), ω in s−1 (Kreisfrequenz), 1 eV entspricht etwa einem ω von 1,520 · 1015 s−1
$ E=h\cdot \nu =h\cdot c/\lambda =\left(1{,}239\,841\,930\ \mathrm {eV\mu m} \right)/\lambda $ ,   E dabei in eV (Elektronenvolt), λ in μm (Wellenlänge), 1 eV entspricht etwa 1,240 μm = 1240 nm

Beispiel: Rotes Licht mit 620 nm Wellenlänge hat eine Photonenenergie von ungefähr 2 eV.

Der Impuls $ p $ eines Photons beträgt damit

$ p={\frac {h\nu }{c}}={\frac {h}{\lambda }}\,. $

Photonen in Medien

In einem Material wechselwirken Photonen mit dem sie umgebenden Medium, woraus sich veränderte Eigenschaften ergeben. Das Photon kann absorbiert werden, wobei seine Energie natürlich nicht verschwindet, sondern in elementare Anregungen (Quasiteilchen) des Mediums wie Phononen oder Exzitonen übergeht. Möglich ist auch, dass es sich durch ein Medium ausbreitet. Im Teilchenbild existiert kein gleichmäßiges Medium, sondern eine Abfolge von Streuprozessen des Photons an den Atomen des Mediums. Diese Ausbreitung kann man durch die Einführung eines Quasiteilchens, dem Polariton, beschreiben. Diese elementaren Anregungen in Materie haben üblicherweise keine lineare Dispersionsrelation, und ihre Ausbreitungsgeschwindigkeit ist niedriger als die Vakuumlichtgeschwindigkeit bis hin zu nur einigen Metern pro Sekunde für spezielle Materialien.

Wechselwirkung von Photonen mit Materie

Photonen, die auf Materie treffen, lösen bei bestimmten Energien unterschiedliche Prozesse aus. Im Folgenden sind für verschiedene Prozesse die Energiebereiche angegeben, in denen sie relevant sind:

Diese Effekte tragen maßgeblich dazu bei, dass man diese Strahlung detektieren kann und sich bestimmte Stoffe mit bestimmten Effekten anhand der Gammaspektroskopie nachweisen lassen.

Literatur

  • Chandrasekhar Roychoudhuri, Rajarshi Roy: The nature of light: What is a photon? In: Optics and Photonics News. 14, Nr. 10, 2003, ISSN 1047-6938, Supplement, S. 49–82.
  • Harry Paul: Photonen: Eine Einführung in die Quantenoptik. 2. Auflage. Teubner, Stuttgart 1999, ISBN 3-519-13222-2. (Teubner-Studienbücher Physik)
  • Klaus Hentschel: Einstein und die Lichtquantenhypothese. In: Naturwissenschaftliche Rundschau. 58(6), 2005, ISSN 0028-1050, S. 311–319.
  • Liang-Cheng Tu, Jun Luo, George T. Gillies: The mass of the photon. In: Reports on Progress in Physics. 68, Nr. 1, 2005, doi:10.1088/0034-4885/68/1/R02, S. 77–130.
  • Richard Feynman: QED. The Strange Theory of Light and Matter. 1985 (dt. QED. Die seltsame Theorie des Lichts und der Materie. 1987, ISBN 3-492-21562-9)

Weblinks

Wiktionary Wiktionary: Photon – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Commons: Photon – Sammlung von Bildern, Videos und Audiodateien

Vorlage:Commonscat/WikiData/Difference

  • HydrogenLab 3D Animationen von atomaren Übergängen: Absorption und Emission von Photonen (semiklassisch)
  • QuantumLab Experimente mit einzelnen Photonen: Beweis der Existenz, Quantenzufall, Verschränkung,...

Einzelnachweise

  1.  Albert Einstein: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. In: Annalen der Physik. 322, Nr. 6, 1905, S. 133 (Online, abgerufen am 24. Januar 2012).
  2. Gilbert N. Lewis: The Conservation of Photons. In: Nature. 118, Nr.2981, 1926, S. 874–875, doi:10.1038/118874a0. Max Planck sprach in seiner Nobelpreisrede vom 2. Juni 1920 noch von „Lichtquanten“.
  3. What is the mass of a photon? Abgerufen am 10. August 2011.
  4. Particle Data Group, Eigenschaften des Photons PDF
  5. Siehe z. B. pro-physik.de über Spin-Hall-Effekt jetzt auch mit Photonen
  6. CODATA Recommended Values. National Institute of Standards and Technology, abgerufen am 16. Juni 2011. Wert für $ \hbar $ in der Einheit eVs
  7. CODATA Recommended Values. National Institute of Standards and Technology, abgerufen am 15. Juni 2011. Wert für h in der Einheit eVs

News mit dem Thema Photon

21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.
12.09.2022
Quantenoptik
Mehr Photonen für die Quantenkommunikation
Forscher*innen aus Deutschland und Österreich stellen eine neue Methode für die Erzeugung von Photonen vor, mit der die Informationsrate in zukünftigen Quantenkommunikationsnetzwerken verdoppelt werden kann.
25.08.2022
Quantenoptik | Teilchenphysik
Verschränkte Photonen nach Maß
Physikern ist es gelungen, mehr als ein Dutzend Photonen auf definierte Weise und effizient miteinander zu verschränken.
13.06.2022
Quantenphysik
Photonenzwillinge ungleicher Herkunft
Identische Lichtteilchen (Photonen) sind wichtig für viele Technologien, die auf der Quantenphysik beruhen.
11.03.2022
Quantenoptik
Quanteninformation: Licht aus Seltenerdmolekülen
Mit Licht lässt sich Quanteninformation schnell, effizient und abhörsicher verteilen.
22.09.2021
Quantenphysik
Quantenkryptographie-Rekord mit höherdimensionalen Photonen
Quantenkryptographie ist eine der erfolgversprechendsten Quantentechnologien unserer Zeit.
25.03.2021
Quantenoptik
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
19.03.2021
Quantenoptik
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung.
11.03.2021
Quantenphysik
Roboter lernen schneller mit Quantentechnologie
Künstliche Intelligenz ist Teil unseres modernen Lebens und eine entscheidende Frage für praktische Anwendungen ist, wie schnell solche intelligenten Maschinen lernen können.
01.03.2021
Akustik | Optik | Quantenoptik
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
01.03.2021
Quantenoptik
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
24.02.2021
Quantenphysik
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich.
28.01.2021
Quantenphysik | Teilchenphysik
Entwicklung einer rekordverdächtigen Quelle für Einzelphotonen
Forschende der Universität Basel und der Ruhr-Universität Bochum haben eine Quelle für einzelne Photonen entwickelt, die Milliarden dieser Quantenteilchen pro Sekunde produzieren kann.
25.01.2021
Astrophysik | Teilchenphysik
Neue Möglichkeiten bei Suche nach kalter dunkler Materie
Das Baryon-Antibaryon-Symmetrie-Experiment (BASE) am Antiprotonen-Entschleuniger des CERN hat neue Grenzen für die Masse von Axion-ähnlichen Teilchen – hypothetischen Teilchen, die Kandidaten für dunkle Materie sind – festgelegt und eingeschränkt, wie leicht sie sich in Photonen, die Teilchen des Lichts, verwandeln können.
12.01.2021
Quantenoptik
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen.
23.11.2020
Quantenphysik
Nanodiamanten vollständig integriert kontrollieren
Physikerinnen und Physikern ist es gelungen, Nanodiamanten vollständig in nanophotonischen Schaltkreisen zu integrieren und gleichzeitig mehrere dieser Nanodiamanten optisch zu adressieren.
06.11.2020
Festkörperphysik | Quantenoptik
„Schilde hoch!“ – Licht definiert seinen eigenen geschützten Weg
Wissenschaftler der Universität Rostock haben eine neue Art photonischer Schaltkreise entwickelt, in denen hochenergetische Lichtstrahlen ihren eigenen Weg definieren können – und sich dabei von äußeren Störeinflüssen abschirmen.
07.10.2020
Optik | Quantenphysik
Intelligente Nanomaterialien für Photonik
In Kombination mit Lichtwellenleitern ermöglichen 2D-Materialien mit herausragenden optischen Eigenschaften ganz neue Anwendungen im Bereich der Sensorik, der nichtlinearen Optik und der Quantenelektronik.
24.09.2020
Atomphysik | Teilchenphysik
Atombillard mit Röntgenstrahlen: Blick ins Innere von Molekülen
1921 erhielt Albert Einstein den Nobelpreis für Physik für seine Entdeckung, dass Licht quantisiert ist und als ein Strom von Lichtteilchen – Photonen – mit Materie wechselwirkt.
15.09.2020
Quantenoptik
Einzelphotonen vom Siliziumchip: Forschungsteam entwickelt neuartige Quelle für Quanten-Lichtteilchen
Die Quantentechnologie gilt als überaus zukunftsträchtig: Quantencomputer sollen in einigen Jahren Datenbanksuchen, KI-Systeme und Simulationsrechnungen revolutionieren.
10.08.2020
Elektrodynamik | Festkörperphysik | Teilchenphysik
Stark lichtabsorbierendes und regelbares Material entwickelt
Physiker der Universität Basel haben durch die Schichtung verschiedener zweidimensionaler Materialien eine neue Struktur geschaffen, die Licht einer wählbaren Wellenlänge fast vollständig absorbiert.
27.03.2020
Quantenoptik
Physiker entwickeln neue Photonenquelle für abhörsichere Kommunikation
Ein internationales Team unter Beteiligung von Prof.
24.03.2020
Quantenoptik
Quantenoptiker zwingen Lichtteilchen, sich wie Elektronen zu verhalten
Auf der Basis theoretischer Überlegungen von Physikern der Universität Greifswald ist es gelungen, photonische topologische Isolatoren als Lichtwellenleiter zu realisieren, in denen sich Photonen wie Elektronen verhalten, und somit fermionische Eigenschaften zeigen.
14.11.2019
Quantenoptik | Quantencomputer
Eine Einbahnstraße für Licht
Licht lässt sich in unterschiedliche Richtungen lenken, meist auch wieder den gleichen Weg zurück.
28.10.2019
Atomphysik | Elektrodynamik | Optik
Und es ward…ein neuartiges Licht:Lichtwellen mit intrinsischer Chiralität halten Spiegelmoleküle zuverlässig auseinander
Licht bietet den schnellsten Weg, um rechts- und linkshändige chirale Moleküle zu unterscheiden, was für viele Anwendungen in Chemie und Biologie unerlässlich ist.
21.10.2019
Quantenphysik
Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie
Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen.
09.10.2019
Quantenphysik
Physiker verbinden Bauteile von Quantentechnologien
Weltweit tüfteln Forscher an den Bauteilen von Quantentechnologien – dazu gehören Schaltkreise, die Informationen mit Lichtquanten anstatt Elektrizität weitergeben, aber auch Lichtquellen, die einzelne Photonen produzieren.
01.10.2019
Relativitätstheorie | Quantenoptik
Beyond Einstein: Rätsel um Photonen-Impuls gelöst
Physiker der Goethe-Uni messen winzigen Effekt mit neuer super-COLTRIMS Apparatur/ Publikation in Nature Physics.
26.09.2019
Festkörperphysik | Quantenoptik
(Laser)Photonen und Elektronen schalten die Silber-Silber-Wechselwirkung und Reaktivität
Forschern aus dem Transregio-Sonderforschungsbereich „Kooperative Effekte in homo- und heterometallischen Komplexen“ (SFB/TRR 88 „3MET“) gelang es, eine neue Komplexverbindung aus Silber und Wasserstoff (Silberhydrid) herzustellen, die interessante optische Eigenschaften und Reaktivität gegenüber Sauerstoff aufweist.
17.09.2019
Quantenphysik
Rostocker Forschern gelingt Durchbruch in der Quantenphysik
Quantenphysik ist die umfassende, seit über einhundert Jahren erfolgreiche Theorie der mikrophysikalischen Wirklichkeit.
23.08.2019
Festkörperphysik | Quantenphysik
Licht-Materie-Wechselwirkung ohne Störeinflüsse
Bestimmte Halbleiterstrukturen, Quantenpunkte genannt, könnten die Basis für eine Quantenkommunikation darstellen.
22.08.2019
Kernphysik | Thermodynamik
Erstmals entschlüsselt: Wie Licht 
chemische Reaktionen in Gang hält
Um Menschen weltweit klimaverträglich mit Energie zu versorgen, gilt Wasserstoff als Brennstoff der Zukunft.
16.08.2019
Elektrodynamik | Quantenoptik
Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung
Der „Landau-Niveau-Laser“ ist ein spannendes Konzept für eine ungewöhnliche Strahlungsquelle.
17.07.2019
Elektrodynamik | Wellenlehre
Technologien für die sechste Mobilfunkgeneration
Drahtlose Datennetze der Zukunft müssen höhere Übertragungsraten und kürzere Verzögerungszeiten ermöglichen und dabei immer mehr Endgeräte versorgen.
11.07.2019
Elektrodynamik | Festkörperphysik
Leistungsstärkere weiße OLEDs: Dresdner Physiker befreien Photonen mittels Nanostrukturen
Organische Leuchtdioden (OLEDs) haben dank intensiver Forschungsarbeiten in den letzten Jahrzehnten den Elektronikmarkt immer weiter erobert – von OLED-Handydisplays bis zu herausrollbaren Fernsehbildschirmen, die Liste der Anwendungsfelder ist lang.
04.07.2019
Thermodynamik | Festkörperphysik
Abstimmung der Energieniveaus von organischen Halbleitern
Physiker des Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) und des Center for Advancing Electronics Dresden (cfaed) der TU Dresden konnten gemeinsam mit Forschern aus Tübingen, Potsdam und Mainz zeigen, wie elektronische Energien in organischen Halbleiterfilmen durch elektrostatische Kräfte eingestellt werden können.
24.04.2019
Teilchenphysik | Quantenoptik
Münchner Lichtquanten-Destillerie
Garchinger Physiker entwickeln eine Technik, um reine einzelne Photonen zu extrahieren.
25.03.2019
Galaxien | Teilchenphysik
Nahe Galaxie bringt Licht ins Dunkel des frühen Universums
Ein Team von Astronominnen und Astronomen hat entdeckt, wie energiereiche Photonen einer nahegelegenen Galaxie entkommen.
06.03.2019
Atomphysik | Quantenoptik
Organische Bauelemente für Quantennetzwerke – Wenn ein Molekül Photonen sortiert
Physikern des Max-Planck-Instituts für die Physik des Lichts (MPL) in Erlangen ist es gelungen, ein organisches Molekül in ein fast perfektes Quantensystem mit nur zwei wohldefinierten Energieniveaus zu verwandeln.
19.02.2019
Quantenoptik
Physiker der TU Dortmund legt neue Grundlagen für die Weiterentwicklung von Strahlungsquellen
Die Forschungsergebnisse des Teams um JProf.
06.02.2019
Galaxien | Teilchenphysik
Rotationsdynamik von Galaxien: Physiker analysieren Einfluss der Photonmasse
Ist es möglich, dass die Wirkung der Photonenmasse auf die gasförmigen Komponenten in Galaxien so stark ist wie die der Dunklen Materie?
29.01.2019
Festkörperphysik
Forscher der TUDresden entschlüsseln elektrische Leitfähigkeit von dotierten organischen Halbleiter
Wissenschaftler des Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) und des Center for Advancing Electronics Dresden (cfaed) an der TU Dresden haben in Kooperation mit der Stanford University (USA) und dem Institute for Molecular Science in Okazaki (Japan) wesentliche Parameter identifiziert, die die elektrische Leitfähigkeit in dotierten organischen Leitern beeinflussen.
14.01.2019
Quantenoptik
Neuartiger Schaltkreis für die Quantenphotonik
Physikern der Universität Paderborn ist es erstmals gelungen, Schlüsselbausteine der Quantenphotonik auf einen einzelnen Chip zu integrieren und damit die Bündelung zweier einzelner Photonen – auch bekannt als Hong-Ou-Mandel-Experiment – zu demonstrieren.
03.12.2018
Festkörperphysik | Teilchenphysik
Die Kraft des Vakuums
Wissenschaftler der Theorie-Abteilung des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) am Center for Free-Electron Laser Science in Hamburg haben mit theoretischen Berechnungen und Computersimulationen gezeigt, dass in atomar dünnen Schichten eines Supraleiters durch virtuelle Photonen die Kraft zwischen Elektronen und Gitterverzerrungen kontrollieren lässt.
30.10.2018
Quantenphysik | Quantenoptik
Rydberg-Systeme als neue Plattform für Optische Quantenkommunikation und Quantennetzwerke
Durchbruch in der Quantenforschung: Mit elektromagnetisch induzierter Transparenz lassen sich starke Wechselwirkungen von Rydberg-Atomen auf Licht übertragen.
29.10.2018
Quantenoptik
Kleinste Lichtportionen auf Knopfdruck: Uni Stuttgart entwickelt neuartige Einzelphotonenquelle
Forschende des Zentrums für Integrierte Quantenwissenschaft und -technologie Baden-Württemberg IQST am 5.
23.10.2018
Quantenphysik
Quantenkommunikation auf Glasfaserbasis - Interferenz mit Lichtquanten unabhängiger Quellen
Wissenschaftler arbeiten weltweit an der absolut abhörsicheren Kommunikation – der sogenannten Quantenkommunikation.
28.09.2018
Optik | Teilchenphysik
Maschinelles Lernen hilft, Photonik-Anwendungen zu optimieren
Photonische Nanostrukturen erhöhen nicht nur die Effizienz von Solarzellen, sondern verbessern auch die Wirksamkeit von optischen Sensoren, die zum Beispiel als Krebsmarker verwendet werden.
31.08.2018
Quantenphysik
Hellste Quelle verschränkter Photonen
Wissenschaftler des Leibniz-Instituts für Festkörper- und Werkstoffforschung Dresden (IFW) und der Leibniz Universität Hannover (LUH) haben eine optische Breitbandantenne zur effizienten Aussendung verschränkter Photonen entwickelt.
26.07.2018
Quantenoptik | Teilchenphysik
Starke Kopplung durch Spin-Trio
Um Qubits für Quantencomputer weniger störanfällig zu machen, benutzt man vorzugsweise den Spin zum Beispiel eines Elektrons.
28.06.2018
Quantenoptik | Teilchenphysik
Ein einzelnes Atom vermittelt starke Wechselwirkungen zwischen Lichtquanten
Physiker am MPQ in Garching beobachten in einem Atom-Resonator-System starke Wechselwirkungen zwischen verschiedenfarbigen Photonen.
22.06.2018
Quantenphysik
Der photoelektrische Effekt in Stereo
Beim photoelektrischen Effekt löst ein Photon ein Elektron aus einem Material heraus.
14.06.2018
Quantenphysik
Dem Mysterium der verschränkten Lichtteilchen auf der Spur
Berner Forschenden ist ein wichtiger Schritt auf dem Weg zu neuen Messmethoden wie der Quanten-Spektroskopie gelungen.
20.06.2018
Quantenoptik
Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen.
29.05.2018
Festkörperphysik | Quantenphysik | Quantenoptik | Teilchenphysik
Ultradünner Supraleiter ebnet Weg zu neuen quantenelektronischen Instrumenten
Forschern des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) ist es gemeinsam mit Kollegen aus Karlsruhe, London und Moskau gelungen, erstmals einen kohärenten Quanteneffekt mit einem bei tiefen Temperaturen kontinuierlich supraleitenden Nanodraht experimentell nachzuweisen und damit einen neuen Quantendetektor zu realisieren.
22.05.2018
Elektrodynamik | Festkörperphysik | Quantenoptik
Faserlaser mit einstellbarer Wellenlänge
Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie.
16.04.2018
Festkörperphysik | Quantenoptik
Ein Wimpernschlag vom Isolator zum Metall
Dank der geschickten Kombination neuartiger Technologien lassen sich vielversprechende Materialien für die Elektronik von morgen untersuchen.
03.04.2018
Teilchenphysik
Ein „Schweizer Taschenmesser“ für Elektronenstrahlen - vier Geräte in einem
Forscher bei DESY haben einen Mini-Teilchenbeschleuniger gebaut, der auf Knopfdruck vier verschiedene Funktionen ausführen kann.
26.02.2018
Teilchenphysik
Vorstoß ins Innere der Atome
Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren.
14.11.2017
Quantenoptik
Wesentliche Quantencomputer-Komponente um zwei Größenordnungen verkleinert
Forscher am IST Austria haben kompakte nichtmagnetische Photonenrouter entwickelt.
03.08.2017
Quantenoptik
Ruckartige Bewegung schärft Röntgenpulse
Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“.
30.06.2017
Quantenoptik
Laser World of Photonics 2017: Fraunhofer IOF präsentiert neue Technologie für Quantenkommunikation
In naher Zukunft wird Quantenkryptographie ein wichtiges Thema für die sichere Übertragung von Kommunikation spielen.
30.06.2017
Optik
Neue Methode für die Datenübertragung mit Licht
Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen.
18.11.2015
Quantenphysik | Quantenoptik
Qualitätskontrolle für Quantensimulatoren
Wissenschaftler der FU Berlin, der Universidade Federal do Rio de Janeiro und des MPQ entwickeln neues Verfahren für die Zertifizierung photonischer Quantensimulatoren.

Die cosmos-indirekt.de:News der letzten Tage

25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.
18.11.2022
Schwarze Löcher | Relativitätstheorie
Rekonstruktion eines ungewöhnlichen Gravitationswellensignals
Ein Forschungsteam aus Jena und Turin (Italien) hat die Entstehung eines ungewöhnlichen Gravitationswellensignals rekonstruiert.
18.11.2022
Thermodynamik | Festkörperphysik
Bläschenbildung: Siedeprozess deutlich genauer als bisher beschrieben
Siedet eine Flüssigkeit in einem Gefäß, bilden sich am Boden winzige Dampfbläschen, die aufsteigen und Wärme mit sich nehmen.
15.11.2022
Sterne | Planeten | Atomphysik | Quantenphysik
Neues vom Wasserstoff: Erkenntnisse über Planeten und Sterne
Mit einer auf Zufallszahlen basierenden Simulationsmethode konnten Wissenschaftler die Eigenschaften von warmem dichten Wasserstoff so genau wie nie zuvor beschreiben.