Polyalkylenglycolether

Erweiterte Suche

Polyalkylenglycolether, auch Fettalkoholpolyglycolether, Fettalkoholethoxylate (FAEO), (Handelsnamen u. A. Brij®, Genapol®, Lutensol®), sind eine Reihe von nichtionischen Tensiden. Der lipophile Teil dieser Tenside besteht aus Fettalkoholen, der hydrophile Teil bildet kurzkettige Polyethylenglycole (Polyoxyethylene). Als Fettalkohole werden die sich von Laurin-, Palmitin-, Stearin- oder Ölsäure abgeleiteten Alkohole verwendet.

Herstellung

Polyalkylenglycolether werden aus Fettalkoholen und Ethylenoxid über eine Ethoxylierungsreaktion mit einem geeigneten Katalysator und einer Temperatur von 150 bis 180 °C bei einem Druck von 2 bis 5 bar hergestellt.[1]

$ \mathrm{R{-}OH + n\ C_2H_4O \longrightarrow R{-}O{-}[CH_2{-}CH_2{-}O]_n{-}H} $

Eine analoge Reaktion läuft ab, wenn man statt Ethylenoxid Propylenoxid verwendet.

Eigenschaften

Diese Tenside sind beständig gegenüber Säuren und Basen, auch über den pH-Wert hinaus, in dem Tenside vom Estertyp nicht bestehen. Folglich sind sie für das Emulgieren von Fetten und Ölen in sehr sauren oder sehr alkalischen Milieus geeignet. Abhängig von ihren HLB-Werten können die Tenside entweder Öl-in-Wasser (O/W) oder Wasser-in-Öl (W/O) Emulsionen bilden oder die Benetzbarkeit verbessern.

Verwendung

Polyalkylenglycolether als Tenside finden breite Verwendung in Körperpflegeprodukten, Textilverarbeitung, Pflanzenschutzmittel, Farben und Beschichtungen, Klebern und anderen industriellen Anwendungen. Brij 35 findet in der Biochemie Anwendung als Detergens.[2] Da es Proteine im Gegensatz zu SDS nicht denaturiert, wird es benutzt, um Membranproteine in ihrer nativen Konformation aus Membranen herauszulösen.

Über eine Reaktion von Polyalkylenglycolether mit Schwefeltrioxid oder Chlorsulfonsäure erhält man Fettalkoholethersulfate (FAES), die als anionische Tenside von Bedeutung sind.[1]

Handelsübliche Polyalkylenglycolether

Die allgemeine Formel der Polyalkylenglycolether ist Halbstrukturformel der Polyalkylenglycolether.

In der Formel bedeutet m + 1 die Zahl der C-Atome in der Alkylkette. n gibt die durchschnittliche Zahl der Ethylenoxid-Einheiten pro Mol an, sie wird im Stoffnamen in Klammern angegeben.

Einige handelsübliche Fettalkoholethoxylate
Chemische Bezeichnung Andere Namen HLB-Wert Handelsnamen, Beispiele
Polyoxyethylenether des Laurylalkohols (12 C-Atome), CAS-Nummer 9002-92-0, Macrogollaurylether
Polyoxyethylen (4) laurylether Laureth-4 (INCI) 9,7 Brij 30
Polyoxyethylen (9) laurylether Laureth-9 (INCI) Thesit
Polyoxyethylen (23) laurylether Laureth-23 (INCI) 16,9 Brij 35
Polyoxyethylenether des Cetylalkohols (16 C-Atome), CAS-Nummer 9004-95-9
Polyoxyethylen (2) cetylether Ceteth-2 (INCI) 5,3 Brij 52
Polyoxyethylen (10) cetylether Ceteth-10 (INCI) 12,9 Brij 56
Polyoxyethylen (20) cetylether Ceteth-20 (INCI)
Cetomacrogol 1000 (INN)
15,7 Brij 58
Polyoxyethylenether des Cetylstearylalkohols (16/18 C-Atome), CAS-Nummer 68439-49-6, Macrogolcetylstearylether
Polyoxyethylen (6) cetylstearylether Ceteareth-6 (INCI) 10–12 Cremophor A6
Polyoxyethylen (20) cetylstearylether Ceteareth-20 (INCI)
Polyoxyethylen (25) cetylstearylether Ceteareth-25 (INCI) 15-17 Cremophor A25, Marlipal 1618/25
Polyoxyethylenether des Stearylalkohols (18 C-Atome), CAS-Nummer 9005-00-9, Macrogolstearylether
Polyoxyethylen (2) stearylether Steareth-2 (INCI) 4,9 Brij 72
Polyoxyethylen (10) stearylether Steareth-10 (INCI) 12,4 Brij 72
Polyoxyethylen (20) stearylether Steareth-20 (INCI) 15,3 Brij 78
Polyoxyethylenether des Oleylalkohols (18 C-Atome), CAS-Nummer 9004-98-2, Macrogololeylether
Polyoxyethylen (2) oleylether Oleth-2 (INCI) 4,9 Brij 92
Polyoxyethylen (10) oleylether Oleth-10 (INCI) 12,4 Brij 96
Polyoxyethylen (20) oleylether Oleth-20 (INCI) 15,3 Brij 98
Andere Polyalkylenglycolether
Polyoxyethylen (10) tridecylether (CAS-Nummer 24938-91-8) Trideceth-10 (INCI)

Einzelnachweise

  1. 1,0 1,1  Bernd Fabry: Tenside, Eigenschaften, Rohstoffe, Produktion, Anwendungen. In: Chemie in unserer Zeit. 25, Nr. 4, 1991, S. 214–222, doi:10.1002/ciuz.19910250407.
  2. Calbiochem Booklet: Detergents (PDF)

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?