Heisenbergsche Bewegungsgleichung

Heisenbergsche Bewegungsgleichung

Die Heisenbergsche Bewegungsgleichung, auch Heisenberg-Bewegungsgleichung oder Heisenberg-Gleichung, bestimmt die zeitliche Entwicklung eines quantenmechanischen Systems in der Matrixdarstellung (oder auch in der Heisenberg-Darstellung der Quantenmechanik). Sie wurde von Werner Heisenberg in den 1920er Jahren entwickelt. Der wesentliche Unterschied zur Formulierung der Quantenmechanik über die Schrödingergleichung ist, dass in diesem Fall die Zustände die zeitliche Dynamik tragen und die Operatoren konstant sind, hingegen in der Heisenberg-Darstellung die Operatoren die zeitliche Dynamik tragen, während der Zustandsvektor, auf den die Operatoren wirken, zeitlich konstant ist. Daher ist die heisenbergsche Formulierung näher an der klassischen Mechanik, was sich auch durch die formale Ähnlichkeit der klassischen Bewegungsgleichungen, ausgedrückt mit Hilfe der Poisson-Klammern zeigt.

Die Heisenbergsche Bewegungsgleichung ersetzt im Heisenberg-Bild der Quantenmechanik die Schrödinger-Gleichung des Schrödinger-Bildes.

Die Bewegungsgleichung selbst lautet:

dAHdt=i[HH,AH]+AHt

wobei HH der Hamilton-Operator des Systems im Heisenberg-Bild und [HH,AH]HHAHAHHH ein Kommutator ist.

Wenn eine Observable A nicht explizit zeitabhängig ist AHt=0 und zudem mit dem Hamiltonoperator vertauscht, sind die Eigenwerte des Operators eine Erhaltungsgröße.

Bewegungsgleichung für Erwartungswerte

Da im Heisenbergbild die Zustände zeitunabhängig sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{\mathrm{d}}{\mathrm{d}t}|\psi_{{\rm H}}\rangle=0

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left\langle \frac{\mathrm{d}A_{{\rm H}}}{\mathrm{d}t}\right\rangle =\langle\psi_{\rm H}|\frac{\mathrm{d}A_{{\rm H}}}{\mathrm{d}t}|\psi_{\rm H}\rangle=\frac{\mathrm{d}}{\mathrm{d}t}\langle\psi_{\rm H}|A_{{\rm H}}|\psi_{\rm H}\rangle=\frac{\mathrm{d}}{\mathrm{d}t}\langle A_{{\rm H}}\rangle

kann man sofort die Heisenberggleichung der Erwartungswerte angeben:

dAHdt=i[HH,AH]+AHt

Aufgrund der Invarianz des Skalarprodukts unter Bildwechsel (die Erwartungswerte eines Operators sind in allen Bildern gleich), kann man die Gleichung bildunabhängig schreiben:

dAdt=i[H,A]+At

Diese Gleichung ist als Ehrenfest-Theorem bekannt.

Äquivalenz zwischen Schrödinger- und Heisenberg-Gleichung

Im Folgenden wird ausgehend von der Schrödingergleichung die Heisenbergsche Bewegungsgleichung abgeleitet. Die umgekehrte Richtung ist ebenfalls möglich.

Der Darstellungswechsel eines Operators vom Schrödinger- ins Heisenbergbild geschieht über

AH(t)=U(t)AS(t)U(t)

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U(t) der Zeitentwicklungsoperator und U(t) sein adjungierter Operator ist.

Durch Anwenden des Zeitentwicklungsoperators U(t) auf einen Zustandsvektor im Schrödingerbild zum Zeitpunkt t0=0 erhält man den Zustandsvektor zum Zeitpunkt t. Im Folgenden wird stets die abkürzende Schreibweise U(t,0)=U(t) verwendet:

|ψS(t)=U(t)|ψS(0)

Einsetzen der zeitabhängigen Wellenfunktion in die Schrödingergleichung it|ψS(t)=HS(t)|ψS(t) liefert:

itU(t)|ψS(0)=HS(t)U(t)|ψS(0)

Man bekommt eine zur Schrödingergleichung äquivalente Operatorgleichung:

itU(t)=HS(t)U(t)

Vom Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A_{{\rm H}}(t)

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A_{{\rm H}}(t)=U^{\dagger}(t)\,A_{{\rm S}}(t)\,U(t)

wird die Zeitableitung gebildet, wobei die Produktregel angewandt wird:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\mathrm{d}}{\mathrm{d}t}A_{{\rm H}}=\left(\frac{\partial}{\partial t}U^{\dagger}\right)A_{{\rm S}}\, U+U^{\dagger}\, A_{{\rm S}}\left(\frac{\partial}{\partial t}U\right)+U^{\dagger}\left(\frac{\partial}{\partial t}A_{{\rm S}}\right)U

Nun werden obige Operatorgleichung und deren adjungierte

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\partial}{\partial t}U=-\frac{\mathrm{i}}{\hbar}H_{\rm S}U und tU=iUHS

eingesetzt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\mathrm{d}}{\mathrm{d}t}A_{{\rm H}}=\left(\frac{\mathrm{i}}{\hbar}U^{\dagger}H_{\rm S}\right)A_{{\rm S}}\, U+U^{\dagger}\, A_{{\rm S}}\left(-\frac{\mathrm{i}}{\hbar}H_{\rm S}U\right)+U^{\dagger}\left(\frac{\partial A_{{\rm S}}}{\partial t}\right)U

Zusammenfassen:

ddtAH=i(UHSASUUASHSU)+U(ASt)U

Nun schiebt man geschickt eine 1=U^U^ zwischen HSAS und zwischen ASHS ein:

ddtAH=i(UHSUHHUASU^AHUASUAHUHSUHH)+U(ASt)UAHt=i(HHAHAHHH)+AHt

Mit dem Kommutator lässt sich die Heisenbergsche Bewegungsgleichung kompakt schreiben:

dAHdt=i[HH,AH]+AHt

Literatur

  • Franz Schwabl: Quantenmechanik. (QM I). Eine Einführung. 7. Auflage. Springer, Berlinu. a. 2007, ISBN 978-3-540-73674-5.