Heisenberg-Modell (Quantenmechanik)
- Seiten mit Math-Fehlern
- Seiten mit Math-Renderingfehlern
- Quantenmechanik
- Statistische Physik
Das Heisenberg-Modell in der quantenmechanischen Formulierung ist ein in der Theoretischen Physik viel benutztes mathematisches Modell zur Beschreibung von Ferromagnetismus (sowie Antiferromagnetismus und Ferrimagnetismus) in Festkörpern. 1928 haben Werner Heisenberg[1] und Paul Dirac [2] erkannt, dass Ferromagnetismus in einem Festkörper durch einen effektiven Hamiltonoperator beschrieben werden kann, der die quantenmechanischen Ortsfunktionen nicht enthält, da er lediglich aus wechselwirkenden lokalisierten Elektronenspins auf einem Gitter (dem Kristallgitter) aufgebaut ist. Die Wechselwirkung ist dabei (zunächst) reduziert auf benachbarte Spins (nächste-Nachbar-Wechselwirkung):
- $ H_{\text{Heis}}=-J\sum _{<i,j>}{\vec {S_{i}}}\cdot {\vec {S_{j}}}\qquad {\text{mit }}i,j\;\mathrm {n{\ddot {a}}chste} {\text{ Nachbarn}} $
Dabei sind die $ {\vec {S}}_{i} $ und $ {\vec {S}}_{j} $ die bekannten quantenmechanischen Vektoroperatoren zu gegebener Spinquantenzahl s ($ \in $ {1/2, 1, 3/2, 2,...}). Die Indizes i und j beziehen sich auf die Gitterpositionen, wobei unter dem Gitter eine Kette (1-dimensionales Heisenberg-Modell), ein zweidimensionales Gitter (z. B. ein hexagonales Gitter) oder eine dreidimensionale Anordnung (z. B. ein kubisches Gitter) gemeint sein können. Der Spin hingegen ist beim Heisenberg-Modell immer dreidimensional, weshalb es auch als Spezialfall des n-Vektor-Modells mit $ n=3 $ bezeichnet wird.
Ziel der Betrachtung ist es, experimentell beobachtete Effekte wie die spontane Magnetisierung und die kritischen Exponenten an den Phasenübergängen zu modellieren.
Die Austauschwechselwirkung zwischen den lokalisierten Spins wird durch die Coulomb-Abstoßung und das Pauli-Prinzip verursacht und bei Beschränkung auf nächste-Nachbar-Wechselwirkung und Isotropie (siehe unten) mit einer einzigen Kopplungskonstante $ J $, der sogenannten Austauschenergie, ausgedrückt. Das Modell ist geeignet um Ferromagnetismus in Isolatoren qualitativ zu beschreiben, versagt aber bei den meisten Metallen (hier ist das Hubbard-Modell besser geeignet). Das Modell kann durch eine Verallgemeinerung der Heitler-London-Näherung für die Bildung zweiatomiger Moleküle begründet werden (siehe das einschlägige Unterkapitel in Magnetismus). Für eindimensionale Systeme kann es exakt gelöst werden; in zwei und drei Dimensionen gibt es dagegen nur genäherte Lösungen, z. B. mit Quanten-Monte-Carlo-Methoden. Im Gegensatz zum klassischen Heisenberg-Modell werden die Spins durch Operatoren ausgedrückt und gehorchen den Regeln der Quantenmechanik.
Erläuterungen zum Modell
Der Ferromagnetismus von Isolatoren wird bewirkt von lokalisierten magnetischen Momenten, die einer unvollständig gefüllten Elektronenschale (3d-, 4d, 4f oder 5f) zuzuschreiben sind. Diesen lokalisierten magnetischen Momenten $ {\vec {m}}_{i} $ ist ein Drehimpuls $ {\vec {J}}_{i} $ zugeordnet, welcher mit dem jeweiligen Spin $ {\vec {S}}_{i} $ ausgedrückt werden kann:
- $ {\vec {m_{i}}}=\mu _{\mathrm {B} }g_{J}{\vec {J_{i}}}=\mu _{\mathrm {B} }g_{J}{\frac {\vec {S_{i}}}{g_{J}-1}} $
Der Spinvektor $ {\vec {S_{i}}} $ ist gegeben über die Spin-1/2-Operatoren, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g_J ist der Landé-Faktor und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu_{\mathrm B} ist das Bohrsches Magneton. Die Austauschwechselwirkung zwischen den magnetischen Momenten kann so durch die zugehörigen Spins ausgedrückt werden. Die Austauschwechselwirkung simuliert also die Coulombabstoßung und das Pauliprinzip. Die Kopplungskonstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J zwischen den lokalisierten Spins werden daher auch Austauschintegrale genannt. Man nimmt an, dass die Austauschintegrale nur für benachbarte Spins merklich von null verschieden sind. Insgesamt erhält man so also einen effektiven Hamiltonoperator der darauf ausgelegt ist lediglich den Ferromagnetismus bei Isolatoren zu erklären.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} H_{\text{Heis}}&=-J\sum_{<i,j>}\vec{S_i}\cdot\vec{S_j} \qquad \text{mit } i,j\; \mathrm{n\ddot achste}\text{ Nachbarn}\\ &=-J\sum_{<i,j>}\left(S^x_iS^x_j+S^y_iS^y_j+S^z_iS^z_j\right) \\ &=-J\sum_{<i,j>}\left[\frac{1}{2}\left(S^+_iS^-_j+S^-_iS^+_j\right)+S^z_iS^z_j\right] \end{align}
Verallgemeinerungen des Modells
Das Heisenberg-Modell kann verallgemeinert werden, indem man die Kopplungskonstante richtungsabhängig macht (d.h. indem man von isotropen zu anisotropen Systemen übergeht).
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} H_{\text{verallg. Heis}}&=-\sum_{<i,j>}\left( J^x S^x_iS^x_j+J^y S^y_iS^y_j+J^z S^z_iS^z_j \right) \qquad \text{mit } i,j\; \mathrm{n\ddot achste}\text{ Nachbarn} \end{align}
Ein Spezialfall des verallgemeinerten Heisenberg-Modells ist das XXZ-Modell, welches erzeugt wird durch die Setzung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J=J_x=J_y und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J_z=\Delta :
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} H_{\text{XXZ}}&=-\sum_{<i,j>}\left[ J\left( S^x_iS^x_j+S^y_iS^y_j \right)+\Delta S^z_iS^z_j \right] \qquad \text{mit } i,j\; \mathrm{n\ddot achste}\text{ Nachbarn}\\ &=-\sum_{<i,j>}\left[\frac{J}{2}\left(S^+_iS^-_j+S^-_iS^+_j\right)+\Delta S^z_iS^z_j\right] \end{align}
Das Heisenberg-Modell und seine Spezialfälle werden oft im Zusammenhang mit einem angelegten Magnetfeld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): h=g_J\mu_{\mathrm B} B_0 in z-Richtung betrachtet. Der Hamiltonian lautet dann:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} H_{\text{verallg. Heis,h}}&=-\sum_{<i,j>}\left( J^xS^x_iS^x_j+J^yS^y_iS^y_j+J^zS^z_iS^z_j\right) - h \sum_i S^z_i \end{align}
Eine weitere Verallgemeinerung beinhaltet die Einbeziehung von Kopplungen nicht nur zwischen nächsten Nachbarn sowie von Inhomogenitäten, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J\rightarrow J_{ij} :
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} H_{\text{verallg. Heis, inhom.}}&=-\sum_{i,j}\left( J_{ij}^xS^x_iS^x_j+J_{ij}^yS^y_iS^y_j+J_{ij}^zS^z_iS^z_j\right) \quad \text{mit } i,j\;\mathrm{Gitterpl\ddot atze} \end{align}
Die Übergänge zum XY-Modell und zum Ising-Modell lassen sich am besten im n-Vektor-Modell darstellen.
Modell im k-Raum
Zur Analyse des Modells und zur Betrachtung der Anregungen ist es sinnvoll, das Modell im k-Raum zu betrachten. Die Transformation (diskrete Fouriertransformation) für die Spinoperatoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a\in\{x,y,z,+,-\} lautet:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S^a(\vec{k})=\sum_i e^{i\vec{k}\cdot \vec{R}_i}S^a_i
Das verallgemeinerte Heisenbergmodells im Magnetfeld ohne Richtungsabhängigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (J^x_{ij}=J^y_{ij}=J^z_{ij}) mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J_{ij}=J_{ji} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J_{ii}=0 läßt sich dann schreiben als:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} H_{\text{heis,k}}&=-\frac{1}{N}\sum_{\vec{k}}J(\vec{k})\left( S^+(\vec{k})S^-(-\vec{k})+S^z(\vec{k})S^z(-\vec{k})\right)-hS^z(0) \end{align}
wobei auch die Austauschintegrale wellenzahlabhängig sind:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J(\vec{k})=\frac{1}{N}\sum_{ij} J_{ij} e^{i\vec{k}\cdot (\vec{R}_i-\vec{R}_j)}
Grundzustand
In diesem Abschnitt wird der Grundzustand des verallgemeinerte Heisenberg-Modells im Magnetfeld ohne Richtungsabhängigkeit betrachtet. Der Grundzustand ist der Eigenzustand des Systems mit geringster Energie. Dieser ist stark abhängig von Vorzeichen der Kopplungskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J .
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} \text{alle}\qquad J_{ij}>0 & \qquad\text{Ferromagnet}\\ \text{alle}\qquad J_{ij}<0 & \qquad\text{Anti-Ferromagnet/Ferrimagnet} \end{align}
Unter eine Drehung aller Spinvektoren ändert sich das Heisenberg-Modell nicht, es ist also invariant unter einer Rotation. Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J>0 ist es für die Spins energetisch günstiger sich in dieselbe Richtung auszurichten und man spricht von einem ferromagnetischer Grundzustand. Aufgrund der Rotationsinvarianz ist keine Richtung ausgezeichnet, daher wird die Ausrichtung in z-Richtung angenommen. Die Richtung im Festkörper wird durch Anisotropien oder durch ein schwaches angelegtes Magnetfeld bestimmt. Im ferromagnetischen Grundzustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |F\rangle sind alle Spins ausgerichtet in eine Richtung. Spezialisiert man noch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J_0=\sum_{i}J_{ij}=\sum_{j}J_{ij}
dann kann die Grundzustandsenergie angeben werden als:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} &H |F\rangle=E_0|F\rangle \\ \text{mit} \qquad &E_0=-NJ_0\hbar^2S^2-NhS \end{align}
Dabei wurde der Eigenwert des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S^z_i -Operators als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S^z_i|F\rangle=\hbar S|F\rangle benutzt. Für das Spin-1/2-Heisenberg-Modell ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S=1/2 .
Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): J<0 ist es energetisch günstiger, wenn benachbarte Spins in unterschiedliche Richtungen zeigen. Der Grundzustand ist daher stark vom unterliegenden Kristallgitter abhängig. Dieser kann dann antiferromagnetisch oder ferrimagnetisch sein. Für spezielle Kristallgitter kann es auch zu magnetischer Frustration kommen.
Magnonen und Spinwellen
In diesem Abschnitt werden die Anregungen aus dem ferromagnetischen Grundzustand des verallgemeinerte Heisenberg-Modells im Magnetfeld ohne Richtungsabhängigkeit betrachtet. Die Anregungszustände werden dem Quasiteilchen Magnon zugeordnet. Es handelt sich dabei um kollektive Anregungen des gesamten Kristallgitters und diese werden demnach auch als Spinwellen bezeichnet.
Die Eigenzustände des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S^-(\vec{k}) -Operators sind ebenfalls Eigenzustände des Hamiltonians, da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S^-(\vec{k}) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H kommutieren:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): [H_{\text{heis,k}},S^-(\vec{k})]=0
Die einmalige Anwendung des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S^-(\vec{k}) -Operators auf den ferromagnetischen Grundzustand gibt also einen angeregten Eigenzustand des Heisenberg-Modells und wird (normierter) Ein-Magnonenzustand genannt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\vec{k}\rangle=\frac{1}{\hbar\sqrt{2SN}}S^-(\vec{k})|F\rangle
die zugehörige Energie des Zustands ist gegeben als:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E(\vec{k})=E_0+\hbar \omega(\vec{k}) \qquad \text{mit} \qquad \hbar \omega(\vec{k})=\hbar h +2S\hbar^2(J_0-J(\vec{k}))
die Anregungsenergie $ \hbar \omega ({\vec {k}}) $ wird dem schon erwähnten Magnon-Quasiteilchen zugeschrieben. Betrachtet man den Erwartungswert des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S^z_i -Operators auf diesen Zustand so erhält man:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \langle\vec{k}|S^z_i|\vec{k}\rangle=\hbar\left(S-\frac{1}{N}\right)
Dabei ist die linke Seite der Gleichung nicht mehr vom Platz i abhängig. Anschaulich bedeutet dies, dass die Anregung aus dem Grundzustand (Ein-Magnonenzustand) nicht durch das einfache Umklappen eines Spins auf einem Gitterplatz erzeugt wird, sondern dass der Ein-Magnonenzustand über das Gitter gleichmäßig verteilt ist. Daher wird der Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\vec{k}\rangle als kollektive Anregung angesehen und als Spinwelle bezeichnet.
1D-Heisenberg-Modell
Im eindimensionalen Heisenberg-Modell sind die Spins aufgereiht auf einer Kette. Bei periodischen Randbedingungen ist die Kette zu einem Ring geschlossen. Die Eigenzustände und Eigenenergien für das eindimensionale Heisenberg-Modell wurden 1931 von Hans Bethe[3] mit dem Bethe-Ansatz exakt bestimmt.
Eigenvektoren und Eigenzustände
Da der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_z^\text{tot} -Operator mit dem Hamiltonoperator kommutiert zerfällt der gesamte Hilbertraum in verschiedene Unterräume, die einzeln diagonalisiert werden können.
- $ [S_{z}^{\text{tot}},H]=\sum _{i=1}^{N}[S_{i}^{z},H]=0 $
Die verschieden Unterräume können durch ihre Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_z^\text{tot}=-N \dots N Quantenzahlen beschrieben werden. Das heißt, dass die Eigenvektoren Superpositionen aus Basiszuständen mit derselben Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_z^\text{tot} Quantenzahl sind. Im Bethe-Ansatz werden diese Zustände mittels der umgeklappten Zustände vom ferromagnetischen Grundzustand klassifiziert. Zum Beispiel wird der Zustand mit zwei umgeklappten Spins (alsoFehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S^\text{tot}_z=N-2 ) an den Gitterplätzen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_1 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_2 angegeben als:
- $ |n_{1}n_{2}\rangle =|\uparrow \uparrow \underbrace {\downarrow } _{n_{1}}\uparrow \dots \uparrow \underbrace {\downarrow } _{n_{2}}\uparrow \dots \uparrow \rangle $
Die Eigenvektoren in einem Unterraum mit einer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_z Quantenzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_z=N-r sind Superpositionen aus allen möglichen Zuständen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |n_1, n_2, \dots, n_{N-r}\rangle
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\Psi\rangle = \sum^N_{n1 < n2 < \dots < n_r}a(n_1, n_2, \dots, n_r)|n_1, n_2, \dots, n_r\rangle\,;
die Koeffizienten sind ebene Wellen und durch den Bethe-Ansatz gegeben.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a(n_1, \dots, n_r) = \sum_{P\in S_r}\exp\left(i\sum^r_{j=1}k_{P_j}n_j+i\sum_{i<j}\theta_{P_iP_j} \right)
Die Parameter können über die Gleichungen des Bethe-Ansatzes bestimmt werden
- Fehler beim Parsen (Unbekannte Funktion „\begin{alignat}“): \begin{alignat} \cdot 2 \cot \frac{\theta_{ij}}{2}&=\cot\frac{k_i}{2}-\cot\frac{k_j}{2} &\qquad \text{mit}\quad& i,j = 1, \dots, r \\ Nk_i&=2\pi\lambda_i+\sum_{j \neq i}\theta_{ij}&&\lambda_i = {1, \dots, N-1} \end{alignat}
Die Eigenvektoren sind gegeben durch alle Kombinationen der Bethe-Quantenzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\lambda_1, \dots,\lambda_r) , die die Gleichungen des Bethe-Ansatzes erfüllen. Eine Klassifikation der Eigenvektoren ist also über die Bethe-Quantenzahlen möglich. Die Bestimmung aller Eigenvektoren ist allerdings nicht trivial. Diezugehörige Energie des Zustands ist gegeben als:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (E-E_0)=J\sum^r_{j=1}(1-\cos k_j)
Jordan-Wigner-Transformation
Das 1D-Heisenberg-Modell kann bei periodischen Randbedingungen mittels einer Jordan-Wigner-Transformation auf spinlose Fermionen auf einer Kette mit lediglich nächster Nachbarwechselwirkung abgebildet werden. Der Hamiltonian Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H_{\text{Heis}} des 1D-Heisenberg Modells kann demnach geschrieben werden als:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} H_{\text{Heis}}&=-J\sum^N_{n=1}\vec{S}_n\cdot \vec{S}_{n+1}=-J\sum^N_{n=1}\left[\frac{1}{2}(S_n^+S^-_{n+1} + S_n^-S^+_{n+1})+S^z_nS^z_{n+1} \right] \\ &= -J\sum^N_{i=1}\left[ \left(c^\dagger_i c_{i+1} +\text{h.c}\right) + \left( c^\dagger_i c_i - \frac{1}{2}\right)\left(c^\dagger_{i+1} c_{i+1} - \frac{1}{2}\right) \right]\\ &= H_0 + H_J \end{align}
Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c_i,c^\dagger_i sind Erzeugungs- und Vernichtungsoperatoren für spinlose Fermionen.
Literatur
- Wolfgang Nolting, Grundkurs Theoretische Physik, Band 7 - Vielteilchen-Theorie, Springer Verlag
Weblinks
Quellen
- ↑ W. Heisenberg: Zur Theorie des Ferromagnetismus. In: Zeitschrift für Physik. 49, Nr. 9, 1928, S. 619–636, doi:10.1007/BF01328601.
- ↑ Paul Dirac: On the Theory of Quantum Mechanics. In: Proc. Roy. Soc. London A. 112, 1926, S. 661–677.
- ↑ H. Bethe, Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. (On the theory of metals. I. Eigenvalues and eigenfunctions of the linear atom chain), Zeitschrift für Physik A, Vol. 71, pp. 205-226 (1931). SpringerLink.