Hubbard-Modell

Hubbard-Modell

Das Hubbard-Modell ist eine grobe Näherungsmethode der Festkörperphysik. Es liefert eine Beschreibung für das Verhalten von Elektronen in einem als starr angenommenen Gitter. Dabei werden die abstoßenden Coulomb-Kräfte nur für Elektronen, die sich am gleichen Gitterplatz aufhalten, berücksichtigt. Der kinetische Elektronenenergieanteil wird durch ein Überlapp-Integral Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t modelliert, das aus dem Tight-Binding-Modell kommt. Es ist nach dem britischen Physiker John Hubbard benannt.

Der Hamilton-Operator für das Hubbard-Modell ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H = U \sum_i c^\dagger_{i\uparrow} c_{i\uparrow} c^\dagger_{i\downarrow} c_{i\downarrow} - t \sum_{\langle ij \rangle , \sigma} \left( c^\dagger_{i \sigma} c_{j \sigma} + c^\dagger_{j \sigma} c_{i \sigma} \right) .

Dabei steht

  • die Summe über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): i für die Summation über alle Gitterplätze,
  • die Summe über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \langle ij \rangle für die Summe über alle Paare benachbarter Gitterplätze,
  • die Summe über $ \sigma $ für die Summation über beide Spinrichtungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \uparrow und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \downarrow ,
  • und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c^\dagger_{i,\sigma} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c_{i,\sigma} für die fermionischen Erzeugungs- und Vernichtungsoperatoren eines Elektrons am Gitterplatz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): i mit Spinrichtung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma .

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U legt die Stärke der Coulomb-Abstoßung fest, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t wird aus dem Überlappen von Wellenfunktionen an benachbarten Gitterplätzen berechnet.

Die Summe des Coulombterms ermittelt die doppelt besetzten Gitterplätze. Daher lässt sich der Wert von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U am jeweiligen Ort Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{x_i} durch folgendes Integral ermitteln:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U(\mathbf{x_i})=\int d^3\mathbf{r_1} \int d^3\mathbf{r_2} \,\,\left| \Psi (\mathbf{r_1 - x_i}) \right|^2 \frac{e^2}{\left|\mathbf{r_1 - r_2} \right|} \left| \Psi (\mathbf{r_2 - x_i}) \right|^2

In der Summe für das Hüpfen der Elektronen bedeutet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \langle ij \rangle , dass ausschließlich über benachbarte Gitterplätze summiert wird. Außerdem wird durch die Operatorenkonstellation automatisch das Pauli-Prinzip beachtet.

Das Hubbard-Modell ist das einfachste Modell, an dem man das Zusammenspiel von kinetischer Energie, Coulomb-Abstoßung, Pauli-Prinzip und Bandstruktur studieren kann. Trotz seiner einfachen Struktur ist es jedoch bisher nicht gelungen, die exakte Lösung dieses Modells, außer in den Grenzfällen von einer und unendlich vielen Dimensionen, zu finden.

Es wird z.B. im Zusammenhang mit

  • Eigenschaften von Elektronen, die relativ stark lokalisiert sind;
  • Bandmagnetismus (Fe, Co, Ni, ...);
  • Metall-Isolator-Übergang;
  • Hochtemperatur-Supraleitung

diskutiert.