Observable
- Seiten mit Math-Fehlern
- Seiten mit Math-Renderingfehlern
- Quantenmechanik
- Quantenfeldtheorie
- Theoretische Chemie
Eine Observable (lat. observabilis = beobachtbar) ist in der Physik, insbesondere der Quantenphysik, der formale Name für eine Messgröße bzw. für eine spezielle Klasse von Operatoren, die im Zustandsraum wirken. Beispiele sind die Energie, die Ortskoordinaten, die Koordinaten des Impulses und die Komponenten des Spins eines Teilchens sowie die Pauli-Matrizen.
Von-Neumann’sche Theorie
Im traditionellen von-Neumann’schen mathematischen Formalismus der Quantenmechanik werden Observablen durch selbstadjungierte, dicht definierte lineare Operatoren $ A $ auf einem Hilbertraum $ {\mathcal {H}} $ dargestellt. Der Begriff „Observable“ wird oft synonym für die Messgröße, sowie für den zugeordneten Operator verwendet. Diese Theorie verallgemeinert die Bornsche Wahrscheinlichkeitsinterpretation. Das Ergebnis einer Messung der Observablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A eines quantenmechanischen Systems, dessen Zustand durch einen normierten Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Psi\in\mathcal{H} beschrieben wird, ist zufällig. Die Wahrscheinlichkeit, mit der ein bestimmter Messwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B auftreten kann, ist durch die Wahrscheinlichkeitsverteilung gegeben:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P[B]=\langle\Psi|\lambda_A(B)\Psi\rangle
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda_A das Spektralmaß von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A nach dem Spektralsatz bezeichnet.
Wird allgemeiner der quantenmechanische Zustand des Systems durch einen Dichteoperator $ \rho $ beschrieben, so wird die Wahrscheinlichkeitsverteilung des Messergebnisses durch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P[B]=\operatorname{Spur}(\lambda_A(B)\rho)
gegeben.
Der Erwartungswert des Messergebnisses, also der Erwartungswert der Wahrscheinlichkeitsverteilung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P , wird durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \langle\Psi|A|\Psi\rangle bzw. durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{Spur}(A\rho) gegeben.
Im Spezialfall, dass das Spektrum von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A diskret und einfach ist, sind die möglichen Messergebnisse die Eigenwerte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A . Die Wahrscheinlichkeit, den Eigenwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a als Messergebnis zu finden, lautet dann $ \langle \phi _{a}|\Psi \rangle ^{2} $ bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \langle\phi_a|\rho\phi_a\rangle , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi_a einen normierten Eigenvektor zum Eigenwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a bezeichnet.
Beispiele:
- Der Observablen „Ort“ eines Teilchens in einer Dimension entspricht (in Ortsdarstellung) der Multiplikationsoperator mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L_2(\mathbb{R}) , der Ortsoperator.
- Der Observablen „Impuls“ eines Teilchens in einer Dimension entspricht (in Ortsdarstellung) der Differentialoperator $ {\tfrac {\hbar }{\mathrm {i} }}{\tfrac {\mathrm {d} }{\mathrm {d} x}} $ über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L_2(\mathbb{R}) ; genauer gesagt dessen selbstadjungierte Fortsetzung, der Impulsoperator. Hierbei bezeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hbar das reduzierte Plancksche Wirkungsquantum.
- Der Observablen „Energie“ entspricht der Hamiltonoperator.
Moderne Beschreibung durch POVM
→ Hauptartikel: Positive operator valued probability measure (POVM)
Nicht in den traditionellen von-Neumann'schen Formalismus passt die Beschreibung von Zeitmessungen, zum Beispiel der Ankunftszeit eines Teilchens in einem Detektor. Eine genauere realistische formale Modellierung realer Experimente zeigt, dass auch die meisten realen Messungen an Quantensystemen nicht genau durch von-Neumannsche Observable beschrieben werden. Diese Defekte behebt die allgemeinere Beschreibung quantenmechanischer Observablen durch POVM.