Pauli-Matrizen
- Seiten mit Math-Fehlern
- Seiten mit Math-Renderingfehlern
- Darstellungstheorie
- Quantenphysik
Die Pauli-Matrizen $ \sigma _{1},\sigma _{2},\sigma _{3} $ (nach Wolfgang Pauli) bilden zusammen mit der 2×2-Einheitsmatrix, die in diesem Zusammenhang mit $ \sigma _{0} $ bezeichnet wird, eine Basis des 4-dimensionalen reellen Vektorraums der komplexen hermiteschen 2×2-Matrizen. In der Quantenphysik stellen sie die Wirkung der Spindrehimpulsoperatoren, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_i = \tfrac{\hbar}{2} \sigma _i,\ i\in\{1,2,3\} , auf Spin-½-Zuständen, beispielsweise auf Elektronen, dar.
Die Pauli-Matrizen lauten
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma_1 = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix},\quad \sigma_2 = \begin{pmatrix} 0 & -\mathrm i\\ \mathrm i & 0 \end{pmatrix},\quad \sigma_3 = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}.
(An dieser Stelle ist der Index i von der imaginären Einheit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm i zu unterscheiden.)
Darstellung
Die Pauli-Matrizen können neben der Darstellung als Matrizen mit Hilfe der Dirac-Notation dargestellt werden: Dabei können für die Linearkombination entweder die Standard-Basisvektoren oder die Eigenvektoren der Pauli-Matrizen verwendet werden.
| Pauli-Matrix | Matrix | Linearkombination (Standard-Basisvektoren) | Linearkombination (Eigenvektoren) |
|---|---|---|---|
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma_1=\sigma_x | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{pmatrix}0 & 1\\1 & 0 \end{pmatrix} | $ |0\rangle \langle 1|+|1\rangle \langle 0| $ | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |+\rangle\langle+|\,-\,|-\rangle\langle-| |
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma_2=\sigma_y | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{pmatrix}0 & -\mathrm i\\\mathrm i & 0 \end{pmatrix} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm i \left( |1\rangle\langle0| - |0\rangle\langle1| \right) | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\phi^+\rangle\langle\phi^+|-|\phi^-\rangle\langle\phi^-| |
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma_3=\sigma_z | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{pmatrix}1 & 0\\0 & -1 \end{pmatrix} | $ |0\rangle \langle 0|-|1\rangle \langle 1| $ | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |0\rangle\langle0|-|1\rangle\langle1| |
Die verwendeten Vektoren sind wie folgt definiert:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} |0\rangle&=\begin{pmatrix}1\\0\end{pmatrix},& |1\rangle&=\begin{pmatrix}0\\1\end{pmatrix},\\[0.5em] |+\rangle&=\frac{1}{\sqrt2}\begin{pmatrix}1\\1\end{pmatrix},& |-\rangle&=\frac{1}{\sqrt2}\begin{pmatrix}1\\-1\end{pmatrix},\\[0.5em] |\phi^+\rangle&=\frac{1}{\sqrt2}\begin{pmatrix}1\\\mathrm i\end{pmatrix},& |\phi^-\rangle&=\frac{1}{\sqrt2}\begin{pmatrix}1\\-\mathrm i\end{pmatrix} \end{align}
Eigenschaften
Die Pauli-Matrizen sind hermitesch und unitär. Daraus folgt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_0^2 = \sigma_0
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma_0 wie erwähnt die 2×2-Einheitsmatrix ist.
Die Determinanten und Spuren der Pauli-Matrizen sind
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{matrix} \det \sigma_i &=& -1 & \\[1ex] \operatorname{tr} \sigma_i &=& 0 & \quad \mbox{für}\ i = 1, 2, 3. \end{matrix}
Aus Obigem folgt, dass jede Pauli-Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{\sigma}_i die Eigenwerte +1 und -1 besitzt.
Des Weiteren:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma_1 \, \sigma_2 \, \sigma_3 = \mathrm i \, \sigma_0
Die Pauli-Matrizen erfüllen die Algebra
- $ \sigma _{i}\,\sigma _{j}=\delta _{ij}\sigma _{0}+\mathrm {i} \,\sum _{k=1}^{3}\epsilon _{ijk}\;\sigma _{k}\quad {\mbox{für}}\ i,j=1,2,3\, $
(Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \epsilon_{ijk} ist das Levi-Civita-Symbol), also insbesondere bis auf einen Faktor 2 die Drehimpulsalgebra
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): [\sigma_i\,,\sigma_j] = \sigma_i \, \sigma_j - \sigma_j \, \sigma_i = 2\, \mathrm i\, \sum_{k=1}^3 \epsilon_{ijk}\; \sigma_k \quad \mbox{für}\ i,j = 1, 2, 3.
und die Clifford- oder Dirac-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{Cl}(0,3,\mathbb R)
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{\sigma_i\,,\sigma_j\} = \sigma_i \, \sigma_j + \sigma_j \, \sigma_i = 2\, \delta_{ij}\sigma_0 \quad \mbox{für}\ i,j = 1, 2, 3.
Die Pauli-Matrizen gehören zum Spezialfall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): l=1/2 von Drehimpulsoperatoren, die auf Basisvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Lambda_{m} eines Drehimpuls-$ l $-Multipletts mit Quantenzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m in Maßsystemen mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hbar=1 folgendermaßen wirken:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L_3 \Lambda_{m}=m \Lambda_{m}\,,\ m\in\{-l,-l+1,\dots ,l\}\,,
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L_+ \Lambda_{m}=\sqrt{(l-m)(l+m+1)}\, \Lambda_{m+1}\,,
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L_- \Lambda_{m}=\sqrt{(l+m)(l-m+1)}\, \Lambda_{m-1}\,.
Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2l+1 eine natürliche Zahl und für $ m $ treten die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2l+1 verschiedenen Quantenzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m=-l,-l+1,\dots ,l auf. Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): l=1/2 wirken die Drehimpulsoperatoren auf die Komponenten von Linearkombinationen der beiden Basisvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Lambda_{1/2} und $ \Lambda _{-1/2} $ demnach durch Multiplikation mit den folgenden Matrizen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L_3 = \frac{1}{2}\begin{pmatrix}1 & 0\\ 0& -1 \end{pmatrix}\,,\ L_+ = \begin{pmatrix}0 & 1 \\ 0 & 0 \end{pmatrix}\,,\ L_- = \begin{pmatrix} 0& 0\\ 1 & 0 \end{pmatrix}\,.
Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L_1=\frac{1}{2}(L_++L_-) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L_2=\frac{1}{2\mathrm i}(L_+-L_-) ergibt sich dann, dass die Drehimpulsoperatoren auf die Komponenten von Spin-1/2-Zuständen durch Multiplikation mit den halben Pauli-Matrizen wirken.
Zugeordnete Drehgruppe, Zusammenhang mit Spin-1/2-Systemen
Die lineare Hülle der mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm i multiplizierten[1] Pauli-Matrizen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm i\,\sigma_1,\,\mathrm i\,\sigma_2,\,\mathrm i\,\sigma_3 ist mit der üblichen Matrizenmultiplikation eine Lie-Algebra, und aufgrund der mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec n \cdot \vec{\sigma} \,\,:= n_1 \sigma_1 + n_2 \sigma_2 + n_3 \sigma_3 für jeden Einheitsvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec n\in\mathbb R^3 und alle reellen $ \alpha $ geltenden Identität[2]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \exp\Bigl(\!\!-\mathrm i\,\tfrac{\alpha}{2} \; \vec n \cdot \vec{\sigma} \Bigr) = \sigma_0\,\cos\tfrac{\alpha}{2} - \mathrm{i}\, (\vec n \cdot \vec{\sigma})\, \sin\tfrac{\alpha}{2}
sind diese drei Matrizen die Generatoren der komplexen Drehgruppe SU(2).
Der Faktor 1/2 in der obigen Gleichung ist zwar mathematisch verzichtbar. Die Gleichung wird jedoch in der physikalischen Anwendung häufig in genau dieser Form benötigt. Denn (wie in der Einleitung erwähnt) stellen in der Quantenphysik die Matrizen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_i = \tfrac{\hbar}{2} \sigma _i,\ i\in\{1,2,3\} Operatoren dar, die die Veränderung des Zustands eines Spin-1/2-Systems (beispielsweise eines Elektrons) bei Messung der verschiedenen Spinkomponenten beschreiben. Andererseits beschreibt die durch den Exponentialausdruck gegebene Matrix die Veränderung des Spinzustands bei einer räumlichen Drehung. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha entspricht dabei dem gerichteten Drehwinkel um die durch den Einheitsvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec n \in\mathbb R^3 gegebene orientierte Drehachse. Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha = 2\pi ergibt sich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \exp\bigl(\!\!-\mathrm i\,\pi \; \vec n \cdot \vec{\sigma} \bigr) = -\sigma_0 ; d. h. ein Spin-1/2-System wird nicht durch Drehung um den Winkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2\pi , sondern erst durch Drehung um den Winkel $ 4\pi $ wieder in den Ausgangszustand übergeführt („Spinordrehungen“).
Eigenvektoren
Die Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma_3 hat die Eigenvektoren
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \chi_{31} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \chi_{32} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
wie man leicht erkennen kann:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma_3 \chi_{31} = \begin{pmatrix} 1 & 0\\0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \sigma_3 \chi_{32} = \begin{pmatrix} 1 & 0\\0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} = -1 \begin{pmatrix} 0 \\ 1 \end{pmatrix}
entsprechend den Eigenwerten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \pm 1 . Die Eigenvektoren von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma_1 sind
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \chi_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \chi_{12} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma_1 \chi_{11} = \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \sigma_1 \chi_{12} = \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} = -1 \begin{pmatrix} 1 \\ -1 \end{pmatrix}
und die Eigenvektoren von $ \sigma _{2} $
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \chi_{21} = \begin{pmatrix} 1 \\ \mathrm i \end{pmatrix}, \quad \chi_{22} = \begin{pmatrix} \mathrm i \\ 1 \end{pmatrix}:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma_2 \chi_{21} = \begin{pmatrix} 0 & - \mathrm i\\ \mathrm i & 0 \end{pmatrix} \begin{pmatrix} 1 \\ \mathrm i \end{pmatrix} = \begin{pmatrix} 1 \\ \mathrm i \end{pmatrix}, \quad \sigma_2 \chi_{22} = \begin{pmatrix} 0 & - \mathrm i\\ \mathrm i & 0 \end{pmatrix} \begin{pmatrix} \mathrm i \\ 1 \end{pmatrix} = \begin{pmatrix} - \mathrm i \\ -1 \end{pmatrix} = -1 \begin{pmatrix} \mathrm i \\ 1 \end{pmatrix}
Hier zeigt sich, dass die Eigenzustände der Spinoperatoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_1 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_2 Superpositionen der Eigenzustände von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S_3 sind.
Isomorphie zu den Quaternionen
Die mit der imaginären Einheit multiplizierten Pauli-Matrizen zusammen mit der Einheitsmatrix, also die Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{\sigma_0, \mathrm i \sigma_1, \mathrm i \sigma_2, \mathrm i \sigma_3\}\, , spannen eine 4-dimensionale R-Algebra auf, die zu den Quaternionen H isomorph ist. Eine isomorphe Zuordnung ist beispielsweise:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1 \mapsto \sigma_0, \quad i_{\mathbb H} \mapsto - \mathrm i \sigma_1, \quad j_{\mathbb H} \mapsto - \mathrm i \sigma_2, \quad k_{\mathbb H} \mapsto - \mathrm i \sigma_3,
mit $ i_{\mathbb {H} },j_{\mathbb {H} },k_{\mathbb {H} } $ als den bekannten Einheitsquaternionen. Vor diese Zuordnung lässt sich jeder der 24 Automorphismen der Quaternionengruppe Q8 schalten. So kann auch ein Isomorphismus „in umgekehrter Ordnung“ gebaut werden:[3]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1 \mapsto \sigma_0, \quad i_{\mathbb H} \mapsto +\mathrm i \sigma_3, \quad j_{\mathbb H} \mapsto +\mathrm i \sigma_2, \quad k_{\mathbb H} \mapsto +\mathrm i \sigma_1.
Siehe auch
- Gell-Mann-Matrizen
Weblinks
- Eric W. Weisstein: Pauli Matrices. In: MathWorld. (englisch)
Einzelnachweise und Kommentare
- ↑ Durch die Multiplikation mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \pm\mathrm i entstehen aus hermiteschen Matrizen schiefhermitesche Matrizen. Eine Darstellung mit Hilfe von Hermiteschen Operatoren und Matrizen wird von Physikern bevorzugt, weil in der Quantenmechanik messbare Größen (sog. Observablen) stets durch Hermitesche Operatoren beschrieben werden.
- ↑ Charles Misner, Kip S. Thorne, John. A. Wheeler: Gravitation. S. 1142, W. H. Freeman, San Francisco 1973, ISBN 0-7167-0344-0
- ↑ Mikio Nakahara: Geometry, topology, and physics, CRC Press, 2003, Seiten xxii ff (Google Books).