Impulsoperator

Impulsoperator

Der Impulsoperator $ {\hat {\mathbf {p} }} $ gehört in der Quantenmechanik zur Impulsmessung von Teilchen.

Der physikalische Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Psi\, eines Teilchens ist in der Quantenmechanik mathematisch durch einen zugehörigen Vektor eines Hilbertraumes H gegeben. Dieser Zustand wird folglich in der Bra-Ket-Notation durch den Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\Psi \rangle beschrieben. Die Observablen werden durch selbstadjungierte Operatoren auf H dargestellt. Speziell ist der Impuls-Operator die Zusammenfassung der drei Observablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{\mathbf{p}} = (\hat{p}_1,\hat{p}_2,\hat{p}_3) , so dass

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E(\hat{p}_j)=\langle \Psi|\hat{p}_j\,|\Psi\rangle\ ,\quad j=1,2,3

der Mittelwert (Erwartungswert) der Messergebnisse der j-ten Komponente des Impulses des Teilchens im Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \,\Psi ist.

Definition und Eigenschaften

  • Bei der kanonischen Quantisierung deutet man die Phasenraumkoordinaten, den Ort $ x $ und den Impuls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p des klassischen Systems, als selbstadjungierte Operatoren eines Hilbertraums und fordert für die Ortsoperatoren und Impulsoperatoren die kanonischen Vertauschungsrelationen
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): [\hat{x}_i,\hat{p}_j] = \mathrm{i}\,\hbar\,\delta_{ij}\ ,\quad [\hat{x}_i,\hat{x}_j]= 0 = [\hat{p}_i,\hat{p}_j]\ ,\quad i,j\in \{1,2,3\}
in Analogie zu den Poisson-Klammern der Hamiltonschen Formulierung
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{x_i,p_j\}=\delta_{ij}\ ,\ \{x_i,x_j\}=0=\{p_i,p_j\}\,.
Der Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hbar ist aus Dimensionsgründen erforderlich, denn Ort mal Impuls hat die Dimension eines Drehimpulses oder einer Wirkung. Die imaginäre Einheit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rm i muss auftreten, da $ {\hat {x}}_{i} $ und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{p}_j selbstadjungiert sind und ihr Kommutator daher bei Adjunktion sein Vorzeichen wechselt.
  • Aus den kanonischen Vertauschungsrelationen folgt, dass die drei Komponenten des Impulses gemeinsam messbar sind und dass ihr Spektrum (Bereich der möglichen Messwerte) aus dem gesamten Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbb{R}^3 besteht. Die möglichen Impulse sind also nicht quantisiert, sondern kontinuierlich.
  • Die Ortsdarstellung ist durch die Spektraldarstellung des Ortsoperators definiert. Der Hilbertraum H ist der Raum der quadratintegrierbaren, komplexen Funktionen des Ortsraums Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbb{R}^3\,, jeder Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Psi ist durch eine Ortswellenfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi(\mathbf{x}) gegeben. Die Ortsoperatoren $ {\hat {\mathbf {x} }}=({\hat {x}}_{1},{\hat {x}}_{2},{\hat {x}}_{3}) $ sind die Multiplikationsoperatoren mit den Koordinatenfunktionen, das heißt, der Ortsoperator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{x}_i wirkt auf Ortswellenfunktionen durch die Multiplikation der Wellenfunktion mit der Koordinatenfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_i
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\hat{x}_i\, \psi)(\mathbf{x})= x_i\, \psi(\mathbf{x})\,.
Der mathematische Satz von Stone und von Neumann besagt dann, dass bei geeigneter Wahl von Phasen der Impulsoperator, der in den kanonischen Vertauschungsrelationen auftritt, auf Ortswellenfunktionen als Differentialoperator wirkt:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\hat{p}_j\psi)(x)=-{\rm i}\,\hbar\,\left(\frac{\partial}{\partial x_j}\psi\right)(x)\,.
Sein Erwartungswert ist
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E(\hat{p}_j)=\langle \Psi| \hat{p}_j\,|\Psi\rangle= \int \overline{\psi(\mathbf{x})}\,\left(-\mathrm{i}\, \hbar \frac{\partial}{\partial x^j}\psi(\mathbf{x})\right)\, \mathrm d^3 x\,.
  • In der Impulsdarstellung wirkt der Impulsoperator multiplikativ auf quadratintegrierbare Impulswellenfunktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tilde{\psi}(\mathbf{p})
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\hat{p}_j\,\tilde{\psi})(\mathbf{p})=p_j\,\tilde{\psi}(\mathbf{p})
und der Ortsoperator wirkt als Differentialoperator
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\hat{x}_i\,\tilde{\psi})(\mathbf{p}) = \mathrm{i}\, \hbar\,\left(\frac{\partial} {\partial p_i}\tilde{\psi}\right)(\mathbf{p})\,.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{x}_i= l_i\frac{a_i+a_i^{\dagger}}{\sqrt{2}}\ ,\quad\hat{p}_j= \frac{\hbar}{l_j}\frac{a_j-a_j^{\dagger}}{\sqrt{2}\,\mathrm{i}}\,.
Dabei sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): l_1,l_2,l_3 frei wählbare Längen (größer Null) und die Erzeugungs- und Vernichtungsoperatoren genügen den Vertauschungsrelationen
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): [a_i, a_j] = 0 = [a_i^\dagger, a_j^\dagger]\ ,\quad [a_i, a^\dagger_j] = \delta_{ij}\ ,\quad i,j\in\{1,2,3\}\,.

Warum ist der Impulsoperator in Ortsdarstellung ein Differentialoperator?

Nach dem Noether-Theorem gehört zu jeder kontinuierlichen Symmetrie der Wirkung eine Erhaltungsgröße und umgekehrt. Beispielsweise ist der Impuls genau dann erhalten, wenn die Wirkung translationsinvariant ist. In der Hamiltonschen Formulierung erzeugt die Erhaltungsgröße die Symmetrietransformation im Phasenraum durch ihre Poisson-Klammer, der Impuls erzeugt Verschiebungen.

Auf eine Wellenfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi angewendet ergibt jede Verschiebung um Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a die verschobene Funktion $ (T_{a}\,\psi )\,, $ die an jeder Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x den Wert hat, den Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi am Urbild Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x-a hatte,

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (T_a\,\psi)(x)=\psi(x-a)=\sum_{n=0}^\infty{\frac{1}{n!}\left(-a\frac{\partial}{\partial x} \right)^n}\psi=\exp\left(-a\frac{\partial}{\partial x}\right)\psi (also: über Taylorreihe zu einer formalen Exponentialfunktion).

Die Erzeugende dieser einparametrigen Schar von Verschiebungen definiert also bis auf einen Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): -\mathrm{i}/\hbar den Impuls, das heißt, der Impuls $ {\hat {p}}_{x} $ erfüllt definitionsgemäß

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T_a\,\psi=\exp\left(-a\frac{\partial}{\partial x}\right)\psi=\exp{\left(-{\rm i}\,a\frac{\hat{p}_x}{\hbar}\right)}\,\psi\,.

Dabei tritt der Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hbar aus Dimensionsgründen auf, denn das Produkt von Impuls und Ort hat die Dimension eines Drehimpulses oder einer Wirkung. Die imaginäre Einheit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm i ist erforderlich, da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T_a eine unitäre Transformation ist und der Impuls selbstadjungiert sein soll. Leitet man die Gleichung

$ \left(\exp {\left(-{\rm {i}}\,{\frac {{\hat {p}}_{j}\,a^{j}}{\hbar }}\right)}\,\psi \right)(x)=\psi (x-a) $

nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a^j bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a=0 ab, so ergibt sich der Impulsoperator als Ableitung nach dem Ort,

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\hat{p}_j\,\psi)(x) = \mathrm{i}\, \hbar\,\frac{\partial}{\partial a^j}_{|_{a=0}} \psi(x-a)= -\mathrm{i}\,\hbar\frac{\partial}{\partial x^j} \psi(x)\,.

Dass der Impulsoperator im Ortsraum diese Form annimmt, lässt sich auch ohne die Kenntnis des zugehörigen unitären Operators $ T_{a} $ wie folgt aus dem Noether-Theorem ablesen: Man rekonstruiert zunächst aus der Schrödingergleichung die zugehörige Lagrangedichte und bestimmt dann explizit den bei einer infinitesimalen Verschiebung der Wellenfunktion erhaltenen Erwartungswert.

Siehe auch