Curiesches Gesetz
Das curiesche Gesetz (auch Curie-Gesetz genannt) beschreibt die Abhängigkeit der magnetischen Suszeptibilität
Man erhält das Gesetz, wenn man ein ideales System aus
- der Grundzustand der Teilchen thermisch isoliert ist,
- keine Spin-Bahn-Kopplung vorliegt,
- kein Ligandenfeld-Effekt vorliegt,
- keine magnetische Anisotropie vorliegt,
- und keine kollektiven magnetischen Effekte vorliegen, d. h., keine magnetische Wechselwirkung zwischen den Teilchen besteht.
Beschreibung
Als Modell nimmt man die Ausrichtung eines Spin-½-Teilchens in einem äußeren Magnetfeld. Das Elektron als rotierender Ladungsträger hat ein magnetisches Moment und verhält sich als magnetischer Dipol. Legt man ein äußeres Magnetfeld an, übt dieses Magnetfeld eine richtende Kraft auf den Spin des Elektrons aus. Es ist eine Ausrichtung des Spins in Richtung des Magnetfeldes möglich, die energetisch günstig ist, und es ist eine zum Magnetfeld entgegengesetzte Ausrichtung möglich, die energetisch ungünstig ist. Man würde zunächst also erwarten, dass sich in einer Substanz alle Spins parallel zum äußeren Magnetfeld ausrichten. Tatsächlich besteht jedoch eine Temperaturabhängigkeit, die zurückzuführen ist auf:
- Boltzmann-Statistik: Mit steigender Temperatur steigt die Wahrscheinlichkeit, dass Spins die ungünstige antiparallele Ausrichtung einnehmen.
- bzw. Thermische Bewegung: Mit steigender Temperatur wirkt die Eigenbewegung der Teilchen einer Ausrichtung im Magnetfeld entgegen.
Die magnetische Suszeptibilität
(curiesches Gesetz)
Die Curie-Konstante
Darin ist
Oft werden magnetische Suszeptibilität und Curie-Konstante statt auf das Volumen auf die Stoffmenge bezogen. In diesem Fall gilt:
mit
Herleitung für Spin-1/2-Systeme
Das magnetische Moment
Hierin ist
Im äußeren Magnetfeld gibt es für ein Teilchen mit s = ½ nur zwei Ausrichtungsmöglichkeiten (vgl.: Zeeman-Effekt). Zu der energetisch günstigen Ausrichtung in Feldrichtung gehört die magnetische Spinquantenzahl ms = −½, zu der ungünstigen entgegengerichteten Ausrichtung ms = +½. Die jeweils zugehörige Energie ist gegeben durch:
Dabei ist
Im kanonischen Ensemble (bedeutet: bei konstanter Temperatur und konstanter Teilchenanzahl) ergibt sich aus der Boltzmann-Statistik die Besetzungswahrscheinlichkeit
Für eine gegebene Temperatur und magnetische Flussdichte kann man mit dieser Formel die Besetzungswahrscheinlichkeiten der beiden möglichen Zustände berechnen.
Aus den Besetzungswahrscheinlichkeiten ergibt sich die Formel für die Magnetisierung
Dabei bezeichnet
Die magnetische Suszeptibilität hängt mit der Magnetisierung wie folgt zusammen:
Das curiesche Gesetz erhält man als Näherung unter der Annahme, dass der magnetische Einfluss klein gegenüber dem Temperatureinfluss ist, also bei relativ schwachen Magnetfeldern und relativ hohen Temperaturen:
Hierin ist
Mehrelektronen-Systeme
Für Mehrelektronen-Systeme kann das Curie-Gesetz nur begrenzt angewendet werden, da interelektronische Wechselwirkung und Spin-Bahn-Kopplung zu Komplikationen führen. Für den Fall einer reinen LS-Kopplung, bei der der elektronische Grundzustand thermisch isoliert ist, kann die Curie-Konstante wie folgt formuliert werden:
Die Quantenzahlen
Spin-Only-Systeme
Bei Mehrelektronen-Systemen, die zusätzlich zur LS-Kopplung und thermischen Isolierung des Grundzustandes auch eine Halbbesetzung einer Unterschale aufweisen, spricht man von Spin-Only-Systemen. Der Name stammt daher, dass bei Halbbesetzung die Gesamtbahndrehimpuls-Quantenzahl
Der Landé-Faktor lautet dann:
Die Curie-Konstante ergibt sich zu:
Stoffe mit Curie-Paramagnetismus
Das ideale Curie-paramagnetische Verhalten tritt relativ selten auf, da zahlreiche Faktoren (Interelektronische Wechselwirkung, Spin-Bahn-Kopplung, Anisotropie, Ligandenfeld-Effekte, kollektive Effekte) das magnetische Verhalten eines Stoffes stark beeinflussen. Bei den Hauptgruppenelementen zeigen Radikale spin-paramagnetisches Verhalten, z. B. das Sauerstoff-Molekül mit zwei ungepaarten Elektronen. Bei den Nebengruppenelementen findet man Curie-Paramagnetismus nur bei Atomen mit LS-Kopplung und thermisch isoliertem Grundzustand.
Spin-Only-Paramagnetismus findet man bei einigen Verbindungen mit schwachem Ligandenfeld von Mn
Sonstiges
Bei Auftreten kollektiver magnetischer Effekte, also bei Ferromagnetismus, Antiferromagnetismus oder Ferrimagnetismus ist das curiesche Gesetz nicht gültig. Stattdessen wird das Curie-Weiss-Gesetz eingeführt:
Hierin ist C die Curie-Weiss-Konstante und
Literatur
- Heiko Lueken: Magnetochemie. B. G. Teubner, Stuttgart/Leipzig 1999, ISBN 3-519-03530-8.