Eyring-Theorie
- Seiten mit Math-Fehlern
- Seiten mit Math-Renderingfehlern
- Kinetik (Chemie)
Die Eyring-Theorie[1] (nach Henry Eyring (1901–1981)) oder auch Theorie des Übergangszustandes (Transition State Theory = TST) genannt, ist eine molekulare Reaktionstheorie. Sie wurde unter Berücksichtigung molekularer Größen, der Zustandssummen, abgeleitet und beschreibt die absolute Reaktionsgeschwindigkeitskonstante einer chemischen Reaktion.
Die Edukte sind von den Produkten durch einen Potentialwall (Aktivierungsbarriere) getrennt, der einen Sattelpunkt auf der Potentialhyperfläche darstellt. Die Reaktion der Edukte über den Übergangszustand zu den Produkten verläuft entlang einer Trajektorie, der Reaktionskoordinate (Weg zwischen den Edukten und Produkten mit jeweils minimaler Änderung der potentiellen Energie). Der Punkt höchster potentieller Energie auf dieser Reaktionskoordinate, ist der Übergangszustand. Den Begriff Aktivierter Komplex sollte man nicht mehr verwenden. [2] [3]
Die wichtigsten Annahmen, die der TST zugrunde liegen, sind:
- Separation von Kern- und Elektronenbewegung, analog zur Born-Oppenheimer-Näherung
- Die Energiezustände der Edukte lassen sich durch eine Boltzmann-Verteilung beschreiben.
- Alle Moleküle, die den Übergangszustand aus Richtung der Edukte erreicht haben, verlassen ihn in Richtung der Produkte (Einbahnstraßenverkehr) und umgekehrt.
- Im Übergangszustand kann die Bewegung entlang der Reaktionskoordinate von anderen Bewegungen separiert und klassisch als Translation behandelt werden.
- Der Übergangszustand steht mit den Edukten in einem Gleichgewicht. (Quasi-Gleichgewichts-Hypothese)
Als Ergebnis der Herleitung erhält man die Eyring-Gleichung:
- $ k=\kappa \cdot {\frac {k_{b}\cdot T}{h}}\cdot K^{\ddagger } $
$ k $ = Geschwindigkeitskonstante, $ \kappa $ = Transmissionskoeffizient, $ k_{b} $ = Boltzmann-Konstante, $ T $ = Temperatur, $ h $ = Planck´sches Wirkungsquantum, $ K^{\ddagger } $ = Gleichgewichtskonstante des Übergangszustandes
Herleitung
Die Herleitung erfolgt für eine Beispielreaktion, in denen die Edukte $ A $ und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B zum Produkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P reagieren. Als Zwischenstufe definiert man den Übergangszustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): C^{\ddagger} .
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{A+B \ \overrightarrow{\longleftarrow} \ C^{\ddagger} \ \rightarrow \ P}
Die Reaktionsgeschwindigkeit wird als Produktbildungsgeschwindigkeit definiert,
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{d\mathrm{[P]}}{dt}=k^{\ddagger} \cdot \mathrm{[C^{\ddagger}]}
wobei die „Konzentration“ des Übergangszustandes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{[C^{\ddagger}]} durch die Gleichgewichtskonstante des vorgelagerten Gleichgewichtes
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K^{\ddagger}=\mathrm{\frac{[C^{\ddagger}]}{[A] \cdot [B]}}
und die Konzentrationen von A und B ersetzt wird. Man erhält:
- $ {\frac {d\mathrm {[P]} }{dt}}=k^{\ddagger }\cdot K^{\ddagger }\mathrm {\cdot [A]\cdot [B]} $
Man fasst zusammen und bezieht die Produktbildungsgeschwindigkeit auf die Edukte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{d\mathrm{[P]}}{dt}=k \mathrm{\cdot [A] \cdot [B]}
und erhält für die Geschwindigkeitskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k = k^{\ddagger} \cdot K^{\ddagger}
Die weitere Herleitung unterscheidet sich je nach Lehrbuch. Man erhält als Ergebnis die oben angegebene Eyring-Gleichung.
Die Geschwindigkeitskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k^{\ddagger} ergibt sich als
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k^{\ddagger}= \frac{k_b \cdot T}{h}
wobei der Transmissionskoeffizient $ \kappa $ nicht abgeleitet wird, sondern als zusätzlicher Parameter zur Anpassung von experimentellen Ergebnissen an die berechneten eingeführt wird.
Häufig findet man in Lehrbüchern die Darstellung:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k= \frac{k_b \cdot T}{h} \cdot K^{\ddagger}
mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K^{\ddagger} = \frac{Q^{\ddagger}}{Q_{A} Q_{B}} \cdot e^{- \frac{E_{0}}{k_{b}T}}, E_{0} Differenz zwischen den Nullpunktenergien der Edukte und des Übergangszustandes.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k^{\ddagger}= \frac{k_b \cdot T}{h} hat bei T = 300 K einen Wert von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 6{,}25 \cdot 10^{12} \, \mathrm{s}^{-1} und wird als Frequenz-Faktor bezeichnet. Er liegt in der Größenordnung von Stoßfrequenzen der Moleküle in Flüssigkeiten.
Thermodynamische Formulierung
Mit der van ’t Hoffschen Reaktionsisothermen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta G^{\ddagger \circ} = - RT \ln K^{\ddagger} ergibt sich:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k= \frac{k_b \cdot T}{h} \cdot e^{- \frac{\Delta G^{\ddagger \circ}}{RT}}
Die Legendre-Transformation $ \Delta G^{\ddagger \circ }=\Delta H^{\ddagger \circ }-T\cdot \Delta S^{\ddagger \circ } $ der Gibbs-Helmholtz-Gleichung erlaubt eine Darstellung als:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k= \frac{k_b \cdot T}{h} \cdot e^{ \frac{\Delta S^{\ddagger \circ}}{R}} \cdot e^{ - \frac{\Delta H^{\ddagger \circ}}{RT}}
Aus der Arrhenius-Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k=A\cdot e^\frac{-E_A}{\mathrm{R}\cdot T} erhält man eine formale Definition für die Aktivierungsenergie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_{A} :
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{d (\ln k)}{dT} \equiv \frac{E_{A}}{RT^{2}}
Analog kann man die Eyring-Gleichung unter Berücksichtigung der van ’t Hoffschen Reaktionsisobare Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left( \frac{d \ln k}{d T} \right) _{P} = \frac{\Delta H}{RT^{2}} umschreiben:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{d (\ln k)}{dT} = \frac{1}{T} + \frac{\Delta E ^{\ddagger \circ}}{RT^{2}}
Daraus folgt, wenn man die Definition der Enthalpie $ H=E+PV $ einsetzt (bei konstantem Druck):
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_{A} = RT + \Delta E ^{\ddagger \circ} = \Delta H ^{\ddagger \circ} + RT - P (\Delta V ^{\ddagger \circ})
Für unimolekulare Reaktionen ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta V ^{\ddagger \circ} = 0 und für Reaktionen in Lösungen und kondensierter Materie näherungsweise Null:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_{A} = \Delta H ^{\ddagger \circ} + RT
Bei idealen Gasen erhält man für den präexponentiellen Faktor:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A = e^{- (\Delta n^{\ddagger} - 1)} \frac{k_{b}T}{h} e^{\frac{\Delta S^{\ddagger \circ}}{R}}
Kritik
- Die TST basiert auf der klassischen Mechanik. Bei Reaktionen sehr leichter Spezies, zum Beispiel Wasserstoff- oder Deuterium-Atome, treten Tunneleffekte auf, für deren Beschreibung eine quantenmechanische TST nötig wäre. Dieses Problem wurde bisher noch nicht zufriedenstellend gelöst.
- Nur wenn die Bewegung auf der Potentialhyperfläche eine eindimensionale Bewegung entlang der Reaktionskoordinaten ist, ist die Annahme gerechtfertigt, dass die Bewegung entlang der Reaktionskoordinaten separiert werden kann von den anderen Freiheitsgraden. Diese Annahme ist aber für die Herleitung der Eyring-Gleichung nötig.
- Für höhere Temperaturen sind anharmonische Korrekturen des Potentials am Sattelpunkt nötig.
- usw. [2]
Siehe auch
Weblinks
- Theorie des Übergangszustands: Betrachtung aus dem Phasenraum (Version vom 24. April 2009 im Internet Archive) (Englisch, PDF)
Einzelnachweise
- ↑ H. Eyring, J. Chem. Phys. 1935, 3, 107; doi:10.1063/1.1749604.
- ↑ 2,0 2,1 J. I. Steinfeld, J. S. Francisco, W. L. Hase, Chemical Kinetics and Dynamics, 2. Aufl., Prentice Hall, 1998, ISBN 978-0-13-737123-5.
- ↑ Transition State Theory. In: IUPAC Compendium of Chemical Terminology, Electronic version. Abgerufen am 31. März 2007.