W-Boson

Klassifikation
Elementarteilchen
Boson
Eichboson
Eigenschaften [1]
Ladung ±1 e
(±1.602 · 10−19 C)
Masse 80 385 ± 15[2] MeV/c2
Spin 1
mittlere Lebensdauer 3 · 10−25 s
Zerfallsbreite 2 085 ± 42 MeV
Wechselwirkung schwach
elektromagnetisch
Gravitation

Das W-Boson ist ein Eichboson und damit ein Elementarteilchen. Es vermittelt ebenso wie das mit ihm verwandte Z-Boson die schwache Wechselwirkung, eine der fundamentalen Grundkräfte der Physik. Während das Z-Boson elektrisch neutral ist, trägt das W-Boson eine elektrische Ladung, man unterscheidet daher $ W^{+} $ und $ W^{-} $. Das W-Boson ist verantwortlich für die sogenannten geladenen Ströme der schwachen Wechselwirkung.

Eigenschaften

Da das W-Boson mit seiner rund 80-fachen Protonenmasse recht schwer und mit einer Lebensdauer von 3 · 10−25 s sehr kurzlebig ist, ist seine Reichweite und damit auch die Reichweite der schwachen Wechselwirkung sehr kurz (zirka 10−18 m, etwa der Durchmesser eines Protons). Zu vielen Prozessen trägt es nur als virtuelles Teilchen bei. Dadurch kann es auch in Prozessen auftreten, die nicht die nötige Energie für die Erzeugung eines realen W-Bosons haben.

Als reales Teilchen kann das W-Boson an Teilchenbeschleunigern erzeugt werden, z. B. über die Reaktion e+ e → W+ W. Die so erzeugten W-Bosonen sind äußerst kurzlebige Teilchen (Zerfallsbreite 2,085 ± 0,042 GeV, dies entspricht einer Lebensdauer von 3 · 10−25 s), die zu etwa 33 % in Leptonen und zu 67 % Hadronen zerfallen und über diese Zerfallsprodukte nachgewiesen werden. Experimentell nachgewiesen wurde das W-Boson zuerst im Januar 1983 durch UA1 und UA2 am CERN.

Vermittlung der Wechselwirkung

W-Bosonen können die schwache Wechselwirkung sowohl zwischen Leptonen als auch zwischen Quarks vermitteln. Dabei wird jeweils die Art der wechselwirkenden Teilchen verändert (elektrische Ladung und schwacher Isospin).

Beispielsweise kann sich das Elektron (ein negativ geladenes Lepton) durch Emission eines W--Bosons in das zugehörige, elektrisch neutrale Elektron-Neutrino umwandeln.

Bei den Quarks vermitteln die W-Bosonen die Umwandlung verschiedener Flavours ineinander. Ein solcher Prozess findet beispielsweise beim radioaktiven Beta-Zerfall statt, bei dem in einem Neutron des Atomkerns ein Down-Quark (Ladung $ -1/3\,e $) in ein Up-Quark (Ladung $ +2/3\,e $) umgewandelt wird. Dadurch wird das Neutron zu einem Proton und die Kernladungszahl nimmt um eins zu. Das bei diesem Prozess abgestrahlte W-Boson ist – in Übereinstimmung mit der Ladungserhaltung – einfach negativ geladen ($ -1\,e $), also ein W-Boson.

Da es sich beim W-Boson in diesem Fall um ein virtuelles Teilchen handelt, kann es selbst nicht beobachtet werden, sondern nur seine Zerfallsprodukte, ein Elektron und ein Anti-Elektronneutrino. Während von Neutrinos nur Bruchteile mit großen Aufwand detektierbar sind, machen sich die Elektronen als ionisierende $ \beta $-Strahlung bemerkbar.

Die schwache Wechselwirkung wird auch vom Z-Boson vermittelt, das jedoch nicht elektrisch geladen ist. Da Flavour Changing Neutral Currents (kurz FCNC) im Standardmodell der Teilchenphysik nicht als elementare Wechselwirkung existieren, könnte das Z-Boson selbst dann nicht zur Umwandlung von Quarks beitragen, wenn damit keine Ladungsänderung verbunden wäre.

Literatur

  • Bogdan Povh, K. Rith, C. Scholz, F. Zetsche: Teilchen und Kerne: Eine Einführung in die physikalischen Konzepte. 6. Auflage. Springer-Verlag, 2004. ISBN 3-540-21065-2.

Weblinks

Wiktionary Wiktionary: W-Boson – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Die Angaben über die Teilcheneigenschaften (Infobox) sind, wenn nicht anders angegeben, entnommen aus: K. Nakamura et al. (Particle Data Group): Review of Particle Physics. In: Journal of Physics G 37 (2010) 075021 (online).
  2. Pro Physik, abgerufen 31. März 2012

Die cosmos-indirekt.de:News der letzten Tage

22.06.2022
Teilchenphysik
Lange gesuchtes Teilchen aus vier Neutronen entdeckt
Ein internationales Forschungsteam hat nach 60 Jahren vergeblicher Suche erstmals einen neutralen Kern entdeckt – das Tetra-Neutron.
22.06.2022
Festkörperphysik
Dunklen Halbleiter zum Leuchten gebracht
Ob Festkörper etwa als Leuchtdioden Licht aussenden können oder nicht, hängt von den Energieniveaus der Elektronen im Kristallgitter ab.
15.06.2022
Exoplaneten
Zwei neue Super-Erden in der Nachbarschaft
Unsere Sonne zählt im Umkreis von zehn Parsec (33 Lichtjahre) über 400 Sterne und eine stetig wachsende Zahl an Exoplaneten zu ihren direkten Nachbarn.
15.06.2022
Quantenphysik
Quantenelektrodynamik 100-fach genauerer getestet
Mit einer neu entwickelten Technik haben Wissenschaftler den sehr geringen Unterschied der magnetischen Eigenschaften zweier Isotope von hochgeladenem Neon in einer Ionenfalle mit bisher unzugänglicher Genauigkeit gemessen.
13.06.2022
Quantenphysik
Photonenzwillinge ungleicher Herkunft
Identische Lichtteilchen (Photonen) sind wichtig für viele Technologien, die auf der Quantenphysik beruhen.
10.06.2022
Kometen und Asteroiden | Sonnensysteme
Blick in die Kinderstube unseres Sonnensystems
Asteroiden sind Überbleibsel aus der Kinderstube unseres Sonnensystems und mit rund 4,6 Milliarden Jahren ungefähr so alt wie das Sonnensystem selbst.
07.06.2022
Galaxien | Sterne
Das Ende der kosmischen Dämmerung
Eine Gruppe von Astronomen hat das Ende der Epoche der Reionisation auf etwa 1,1 Milliarden Jahre nach dem Urknall genau bestimmt.