Wir verwenden Cookies für grundlegende Funktionen, Statistik, Werbung, externe Medien (YouTube/Maps) und Google Fonts.
Du kannst alle akzeptieren, nur notwendige oder Einstellungen wählen.
Uran(IV)-oxid (oft auch Urandioxid, UO2) ist ein Oxid des Urans. In der Natur kommt es z.B. als Uraninit vor, wobei der ursprünglich aus Uran(IV)-oxid bestehende Uraninit teilweise zu Uran(VI)-oxid weiteroxidiert wird.
Das für die Herstellung der Brennelemente in Kernkraftwerken benötigte Uran(IV)-oxid wird überwiegend aus Uran(VI)-fluorid hergestellt. Für die Umwandlung gibt es mehrere Verfahren. Nasschemische Verfahren sind das AUC- und das ADU-Verfahren.
Beim AUC-Verfahren (AmmoniumUranylCarbonat-Verfahren) wird mit Hilfe von Wasser, Ammoniak und KohlenstoffdioxidAmmoniumuranylcarbonat gebildet und dieses dann durch Erhitzen zu Uran(VI)-oxid umgewandelt. Dieses wird anschließend mit Wasserstoff zu Uran(IV)-oxid reduziert.[4]
Mit dem ADU-Verfahren (AmmoniumDiUranat-Verfahren) werden aus UF6 über Hydrolyse zu Uranylfluorid, Fällung mit Ammoniaklösung zu Ammoniumdiuranat und anschließendem Kalzinieren im Wasserstoffstrom Uran(IV)-oxid hergestellt.[5]
Die Gleichungen für das ADU-Verfahren lauten:
Das ADU-Verfahren ist auch für die Rückgewinnung von Uran aus Lösungen mit Uran(VI)-verbindungen gut geeignet.
Neben diesen Verfahren wird auch ein trockenes Verfahren, das DC-Pulver-Verfahren, verwendet.[6] Bei diesem Verfahren wird das Hexafluorid direkt zu Uran(IV)-oxid bei höheren Temperaturen umgewandelt. Vorteilhaft ist hier, dass keine Abfalllösungen mit Urangehalten anfallen, die einer weiteren Aufbereitung bedürfen. Die Gleichung für dieses Verfahren lautet:
Ein weiteres Verfahren zur Herstellung von Uran(IV)-oxid ist der für die Wiederaufbereitung von Brennelementen verwendete PUREX-Prozess. Bei diesem wird durch eine Extraktion Uranylnitrat gebildet, das wiederum durch Erhitzen in Uran(VI)-oxid umgewandelt und anschließend zu Uran(IV)-oxid reduziert wird.[7]
Uran(IV)-oxid-Luft-Gemische (Staubwolken) sind explosionsfähig, als feines Pulver reagiert es heftig mit der Luft unter Freisetzung von Wärme (pyrophor). Hierbei verbrennt es zu Triuranoctoxid U3O8.
Anwendungen
Uran(IV)-oxid ist der wichtigste Kernbrennstoff in Kernreaktoren. Es wird zu sogenannten „Pellets“ verarbeitet, um in Brennstäben genutzt zu werden. Weiterhin wurde es früher als farbgebender Zusatz in diversen Gläsern und Keramiken genutzt.
↑ 2,02,1 Nicht explizit in EU-Verordnung (EG) 1272/2008 (CLP) gelistet, fällt aber dort mit der angegebenen Kennzeichnung unter den Sammelbegriff „Uranverbindungen“;Eintrag aus der CLP-Verordnung zu Uranverbindungen in der GESTIS-Stoffdatenbank des IFA, abgerufen am 25. April 2011 (JavaScript erforderlich)
Referenzfehler: Ungültiges <ref>-Tag. Der Name „CLP_82950“ wurde mehrere Male mit einem unterschiedlichen Inhalt definiert.
↑ Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
↑M. Volkmer: Basiswissen Kernenergie, Hamburgische Elektricitäts-Werke-AG, 1996, S. 76; ISBN 3-925986-09-X.
↑Norman N. Greenwood, Alan Earnshaw: Chemie der Elemente, 1. Auflage, VCH Verlagsgesellschaft, Weinheim 1988, S. 1616; ISBN 3-527-26169-9.
↑Yong Q. An, Antoinette J. Taylor, Steven D. Conradson, Stuart A. Trugman, Tomasz Durakiewicz, and George Rodriguez: Ultrafast Hopping Dynamics of 5f Electrons in the Mott Insulator UO2 Studied by Femtosecond Pump-Probe Spectroscopy. In: Phys. Rev. Lett.. 107, Nr. 20, 2011, S. 207402–207405. doi:10.1103/PhysRevLett.106.207402.
Literatur
Ingmar Grenthe, Janusz Drożdżynński, Takeo Fujino, Edgar C. Buck, Thomas E. Albrecht-Schmitt, Stephen F. Wolf: Uranium, in: Lester R. Morss, Norman M. Edelstein, Jean Fuger (Hrsg.): The Chemistry of the Actinide and Transactinide Elements, Springer, Dordrecht 2006; ISBN 1-4020-3555-1, S. 253–698; doi:10.1007/1-4020-3598-5_5.