Rydberg-Zustand
Ein Rydberg-Zustand (nach dem schwedischen Physiker Johannes Rydberg) ist ein quantenmechanischer Zustand eines Atoms, Ions oder Moleküls, bei dem das äußerste Elektron wesentlich weiter vom Zentrum entfernt ist als im Grundzustand. Ein Atom in solchem Zustand wird als Rydberg-Atom bezeichnet und schon im einfachsten quantenmechanischen Ansatz für das Wasserstoffproblem gut beschrieben.
In Übereinstimmung mit dem Korrespondenzprinzip geht bei großen Quantenzahlen die quantenmechanische Beschreibung des Rydberg-Atoms in die klassische Beschreibung über. Tatsächlich kann das Elektron hier in guter Näherung als klassisches Teilchen behandelt werden, wie es beim bohrschen Atommodell oder beim bohr-sommerfeldschen Atommodell zugrundegelegt wird.
Aufgrund ihrer im Vergleich zu gewöhnlichen Atomen großen Ausdehnung und großen Anzahl an eng benachbarten oder (fast) entarteten Energieniveaus reagieren Rydberg-Atome besonders empfindlich auf elektrische und magnetische Felder. So zeigt ein Rydberg-Atom, das durch einen verspiegelten Hohlraum mit einem einzigen darin gefangenen Photon hindurchfliegt, Veränderungen seiner Wellenfunktion. Damit kann z. B. die Anwesenheit des Photons nachgewiesen werden, ohne es weiter zu beeinflussen (sog. quantum non demolition-Messung). Für die Entwicklung von darauf basierenden experimentellen Methoden von sonst unerreichter Empfindlichkeit und Genauigkeit erhielten Serge Haroche und David Wineland den Nobelpreis für Physik 2012.
Kennzeichen
Vom Rydberg-Zustand spricht man, wenn ein Atom oder Molekül so angeregt ist, dass ein Elektron eine Hauptquantenzahl
Die Energie eines Elektrons in einem Rydbergzustand liegt nur unwesentlich unter dem Vakuumniveau und ist damit wesentlich höher als die Energie von weiter innen liegenden Elektronen, die eine größere Bindungsenergie haben. Das bedeutet aber auch, dass das entsprechende Elektron sehr einfach vom Atom getrennt (ionisiert) werden kann.
Diese hochliegenden Energieniveaus können durch elektronische Anregung (z. B. mit Strahlung passender Wellenlänge) besetzt werden. Rydberg-Zustände können aber auch entstehen, wenn ein Ion ein Elektron einfängt, beispielsweise, wenn das Ion nahe an eine Oberfläche kommt und ein Elektron von dort auf das Ion übertritt.
Beim Rydberg-Zustand eines Moleküls ist das äußerste Elektron in einem Molekülorbital, welches aus Atomorbitalen aufgebaut ist, die nicht zur Valenzschale des Moleküls gehören.
Größenverhältnisse
Bei Elektronen in weit vom Kern entfernten Rydbergzuständen können viele Eigenschaften durch die klassische Physik, d. h. ohne Berücksichtigung der Quantenphysik, beschrieben werden. Daher gilt für den Abstand Proton-Elektron bei einem Rydberg-Wasserstoffatom:
mit dem bohrschen Atomradius
Dadurch werden Rydbergatome sehr groß, z. B. für n = 100:
Die größten erreichten Quantenzahlen liegen bei n ≈ 500 mit Atomdurchmessern von fast einem Hundertstel Millimeter.
Bindungsenergien
Je weiter das Elektron vom Proton entfernt ist, desto schwächer ist es gebunden bzw. desto kleiner ist die notwendige Ablöseenergie
mit der Rydberg-Energie
Daraus folgt, dass bei n = 100 bereits thermische Energien ausreichen, um das Elektron endgültig abzutrennen. Aus diesem Grund kann man so hoch angeregte Atome nur im Hochvakuum herstellen und „aufbewahren“. Sie entstehen auf natürliche Weise in den obersten Schichten der Atmosphäre der Erde oder der von Sternen.
Verweildauer
Rydbergatome sind klassische Beispiele für eine Besetzungsinversion, weil die meisten oder sogar alle tieferen Zustände leer sind. Besonders bei Abwesenheit von Zusammenstößen mit anderen Atomen und bei maximalem Bahndrehimpuls des Elektrons
Beispiel
Im Wasserstoffatom ist die 1s-Schale die Valenzschale. Für das
Weblinks
- Kreisförmige Rydbergatome - Grafische Modellierung
- Rydbergatome (LEIFI-Physik)
Literatur
H.Dittmar-Ilgen: Erzeugung und Manipulation klassischer Elektron-Orbitale; Naturwissenschaftliche Rundschau 4/2006, S. 206 (H. Maeda; Science 307, 1757 (2005))