Trigonales Kristallsystem

Trigonales Kristallsystem

(Weitergeleitet von Rhomboedrisches Kristallsystem)

Das Trigonale Kristallsystem gehört zu den sieben Kristallsystemen in der Kristallographie. Es umfasst alle Punktgruppen mit einer dreizähligen Dreh- oder Drehinversionsachse. Das trigonale Kristallsystem ist mit dem hexagonalen Kristallsystem eng verwandt und bildet zusammen mit ihm die hexagonale Kristallfamilie.

Die trigonalen Punktgruppen

Das trigonale Kristallsystem umfasst die Punktgruppen $ 3,\,{\bar {3}},\,32,\,3m,\,{\bar {3}}m $. Dies sind alle die Punktgruppen der hexagonalen Kristallfamilie, in denen es eine Raumgruppe mit rhomboedrischer Zentrierung gibt – die Raumgruppen des hexagonalen Kristallsystems können alle mit dem hexagonal primitiven Achsensystem beschrieben werden. Das trigonale Kristallsystem umfasst somit alle Untergruppen der Punktgruppe $ {\bar {3}}m $, die eine 3-zählige Achse haben. Im Gegensatz zu den hexagonalen Punktgruppen haben diese Punktgruppen alle eine kubische Obergruppe. Folgende Tabelle liefert einen Überblick über die Raumgruppen des trigonalen Kristallsystems.

Punktgruppe Primitive Raumgruppen Zentrierte Raumgruppen
$ C_{3} $, $ \ 3 $ $ P3,\,P3_{1},\,P3_{2} $ $ \ R3 $
$ C_{3i}(\equiv S_{6}) $, $ {\bar {3}} $ $ P{\bar {3}} $ $ R{\bar {3}} $
$ D_{3} $, $ \ 32 $ Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P312, \, P321, \, P3_112, \, P3_121 \, P3_212, \, P3_221 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ R32
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): C_{3v} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ 3m Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P3m1, \, P31m, \, P3c1, \, P31c Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ R3m, \, R3c
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D_{3d} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \bar 3m Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P\bar 3 1m, \, P\bar 3 1c, \, P\bar 3 1c, \, P\bar 3 c1 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R \bar 3 m, \, R \bar 3 c

Die Achsensysteme des trigonalen Kristallsystems

Zur Beschreibung trigonaler Raumgruppen finden zwei verschiedene Gitter-Systeme Verwendung: das hexagonale und das rhomboedrische. Diese sind im Artikel hexagonales Kristallsystem ausführlich beschrieben. Die Begriffe trigonal und rhomboedrisch sind im modernen Sprachgebrauch klar abgegrenzt:

  • Trigonal ist die Bezeichnung für eine Menge von Symmetriegruppen.
  • Rhomboedrisch ist die Bezeichnung eines Gitter-Systems.

Die trigonalen Kristallklassen

Zur Beschreibung der trigonalen Kristallklassen in Hermann-Mauguin-Symbolik werden die Symmetrieoperationen bezüglich vorgegebener Richtungen im Gitter-System angegeben.

Im hexagonalen Achsensystem: 1. Symbol in Richtung der c-Achse (<001>). 2. Symbol in Richtung einer a-Achse (<100>). 3. Symbol in einer Richtung senkrecht zu einer a- und der c-Achse (<120>). Für die 3. Richtung wird auch oftmals die im Allgemeinen nicht äquivalente Richtung <210> angegeben. Auch wenn dies speziell für die Angabe der Lage der Symmetrieelemente keine Rolle spielt, so entspricht diese Angabe nicht den Konventionen.

Im rhomboedrischen Achsensystem: 1. Symbol in Richtung der Raumdiagonalen (<111>). 2. Symbol in Richtung einer Flächendiagonalen (<110>).

Charakteristisch für alle Raumgruppen des trigonalen Kristallsystems ist die 3 (oder 3) an 1. Stelle des Raumgruppensymbols.

Kristallklassen im trigonalen Kristallsystem
Kristallklasse Physikalische Eigenschaften Beispiele
Laueklasse Allgemeine Form Schoenflies Hermann-Mauguin Hermann/Mauguin-Kurzsymbol Raumgruppennummern Enantiomorph Optische Aktivität Pyroelektrizität Piezoelektrizität
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \bar{3} trigonal-pyramidal C3 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ 3 \, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ 3 \, 143 - 146 + + + + Carlinit (Tl2S)
rhomboedrisch C3i ≡ S6 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \bar 3 \, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \bar 3 \, 147 - 148 - - - - Dioptas, Dolomit, Ilmenit
$ {\bar {3}}\,{\frac {2}{m}} $ trigonal-trapezoedrisch D3 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ 3 \, 2 \, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ 3 2 \, 149 - 155 + + - + Cinnabarit, Quarz, Selen, Tellur
ditrigonal-pyramidal C3v Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ 3 \, m \, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ 3 m \, 156 - 161 - - + + Pyrargyrit, Turmalingruppe
ditrigonal-skalenoedrisch D3d $ {\bar {3}}\,{\frac {2}{m}} $ Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \bar 3 m \, 162 - 167 - - - - Antimon, Arsen, Bismut, Calcit, Hämatit, Korund

Bei den Angaben zu den physikalischen Eigenschaften bedeutet - : Aufgrund der Symmetrie verboten. + bedeutet: Aufgrund der Symmetrie erlaubt. Über die Größenordnung des Effektes kann aufgrund der Symmetrie keine Aussage getroffen werden, man kann aber davon ausgehen, dass dieser Effekt nie exakt verschwinden wird.

Weitere trigonal kristallisierende chemische Stoffe siehe Kategorie:Trigonales Kristallsystem

Kristallformen des trigonalen Kristallsystems

Literatur

  • W. Borchardt-Ott: Kristallographie. 6. Auflage. Springer, Berlin 2002, ISBN 3-540-43964-1.
  • W. Massa: Kristallstrukturbestimmung. 3. Auflage. Teubner, Stuttgart 2002, ISBN 3-519-23527-7.
  • M. Okrusch, S. Matthes: Mineralogie. 7. Auflage. Springer, Berlin 2005, ISBN 3-540-23812-3.
  • Hahn, Theo (Hrsg.): International Tables for Crystallography Vol. A D. Reidel publishing Company, Dordrecht 1983, ISBN 90-277-1445-2

Weblinks