Molekülphysik
Die Molekülphysik ist ein Teilgebiet der Physik, das sich mit der Untersuchung der chemischen Struktur (z. B. Bindungslängen und -winkel), der Eigenschaften (z. B. Energieniveaus) und des Verhaltens (z. B. Reaktionsprozesse) von Molekülen beschäftigt. Daher kann die Molekülphysik auch als Grenzgebiet zwischen Physik und Chemie aufgefasst werden. Untersuchungsobjekte und -methoden entsprechen weitgehend denen der physikalischen Chemie.
Grundlagen sind die Erkenntnisse der Atomphysik und Quantenmechanik. Ein wichtiges Modell zu Berechnung der Moleküleigenschaften ist die Born-Oppenheimer-Näherung. Das in der Atomphysik wichtige Orbitalmodell wird in der Molekülphysik um Molekülorbitale erweitert.
Die wichtigsten Messmethoden der der Molekülphysik ist die Schwingungsspektroskopie bzw. Molekülspektroskopie, in der nicht nur die elektronischen Energiezustände, sondern auch Schwingungs- und Rotationszustände auftreten.
Molekülspektren
In Molekülen werden die (von den Atomen bekannten) elektronischen Energieniveaus von Schwingungs- und diese von Rotationszuständen weiter unterteilt. Die Energieabstände zwischen elektronischen Zuständen sind am größten und liegen bei einigen Elektronenvolt, die zugehörige Strahlung liegt etwa im sichtbaren Bereich. Die Strahlung von Schwingungsübergängen liegt im mittleren Infrarot (ungefähr zwischen 3 und 10 µm), die von Rotationsübergängen im fernen Infrarot (ca. zwischen 30 und 150 µm). Das Spektrum eines Moleküls besteht in der Regel aus viel mehr Linien als das eines Atoms. Zu einer Änderung des elektronischen Zustandes gehört ein sogenanntes Bandensystem, wobei jede einzelne Bande einem gleichzeitigen Schwingungsübergang beim elektronischen Übergang entspricht. Jede Bande besteht wiederum aus einzelnen Spektrallinien, zu denen jeweils ein parallel zum elektronischen Übergang und zum Schwingungsübergang stattfindender Rotationsübergang gehört.
Hier werden vor allem zweiatomige Moleküle betrachtet, bei denen die Zustände einfacher dargestellt werden können.
Rotation eines zweiatomigen Moleküls
Näherungsweise (für niedrige Rotationsquantenzahlen, das heißt, wenn das Molekül nicht so schnell rotiert, dass der Kernabstand merklich steigt) kann man das Molekül als starr betrachten, das heißt, der Abstand zwischen den Atomkernen ist konstant. Es kommt zur Quantisierung des Drehimpulses (
mit den Rotationsquantenzahlen
mit dem Trägheitsmoment
des Moleküls. Durch spektroskopische Messungen kann man die Rotationskonstante bestimmen und so auf das Trägheitsmoment und den Kernabstand schließen.
Der Abstand zwischen den Energieniveaus
Die Energieunterschiede zwischen Rotationsniveaus liegen im Bereich der typischen thermischen Energien von Teilchen bei Zimmertemperatur. Im thermischen Gleichgewicht sind die Energiezustände nach der Boltzmann-Statistik besetzt. Dabei muss man aber beachten, dass es sich bei dem Zustand mit der Quantenzahl J eigentlich um
Schwingungen eines zweiatomigen Moleküls
Die Atome eines zweiatomigen, hantelförmigen, Moleküls können auch gegeneinander schwingen. Die einfachste Näherung ist hier eine harmonische Schwingung; die potentielle Energie eines Atoms muss hier mit der Entfernung von einem Gleichgewichtsabstand r0 zum anderen Atom quadratisch ansteigen. Die Energieniveaus eines quantenmechanischen harmonischen Oszillators (Quantenzahl
Reale Moleküle weichen jedoch stark von diesem Verhalten ab, das Potenzial ist nicht harmonisch (anharmonischer Oszillator) und steigt bei Annäherung an das andere Atom viel stärker an als bei Entfernung - hier nähert es sich asymptotisch der Dissoziationsenergie
Diese Funktion bildet das reale Potenzial deutlich besser ab. Die Schrödinger-Gleichung des Morsepotentials ist analytisch lösbar und die Energieniveaus ergeben sich zu:
Im Gegensatz zum harmonischen Oszillator liegen nun die erlaubten benachbarten Schwingungszustände nicht mehr äquidistant, sondern verringern ihren Abstand näherungsweise mit
Die Auswahlregeln für Übergänge zwischen Schwingungsniveaus in der Dipolnäherung sind
Rotations-Schwingungs-Wechselwirkung
Weil das Trägheitsmoment des Moleküls durch die Schwingungen schwankt, muss man zur Energie des Moleküls bei genauerer Betrachtung noch die Rotations-Schwingungs-Wechselwirkungsenergie addieren. Nach den folgenden Ansatz für die Gesamtenergie
kann man die sogenannten Dunham-Koeffizienten
Das effektive Potenzial für die Molekülschwingung im zweiatomigen Molekül wird durch die Rotation erhöht (
Dadurch kommt es bei höheren Rotationsquantenzahlen zur Ausbildung einer sogenannten Rotationsbarriere: Bei steigender Entfernung der Atomkerne wächst das effektive Potenzial von einem Minimum (Gleichgewichtslage) zu einem Maximum (der Rotationsbarriere), das bereits über der Dissoziationsenergie liegt, um danach wieder zur Dissoziationsenergie abzufallen. Dadurch kann sich das Molekül in einem Schwingungszustand „hinter“ der Rotationsbarriere befinden, dessen Energie höher ist als die Dissoziationsenergie. Es kann dann zur Dissoziation durch den Tunneleffekt kommen. Bei sehr hohen Rotationsquantenzahlen wird auch das Potenzialminimum über die Dissoziationsenergie gehoben, bei noch höheren Rotationsquantenzahlen gibt es schließlich kein Minimum und somit keine stabilen Zustände mehr.
Elektronische Zustände im zweiatomigen Molekül
Ähnlich wie bei Atomen wird auch hier der Zustand eines Elektrons durch eine Hauptquantenzahl n und eine Bahndrehimpulsquantenzahl l angegeben, wobei den verschiedenen Werten von l wie beim Atom Buchstaben zugeordnet sind (s, p, d, f, …). Das elektrische Feld ist aber nicht mehr kugelsymmetrisch, deshalb muss sich der Bahndrehimpuls relativ zur Kernverbindungsachse einstellen. Die Projektion des Bahndrehimpulses
Die Kopplung der einzelnen Drehimpulse zu einem Moleküldrehimpuls erfolgt zweckmäßig je nach den Stärken der Wechselwirkungen in unterschiedlicher Reihenfolge, man spricht von den Hundschen Kopplungsfällen (a) - (e) (nach Friedrich Hund).
Die Summe der auf die Kernverbindungsachse projizierten Bahndrehimpulse nennt man
Für die elektronischen Zustände werden oft auch andere Bezeichnungen verwendet: X steht für den Grundzustand, A, B, C, … stehen für die immer höher angeregten Zustände (kleine Buchstaben a, b, c, … kennzeichnen in der Regel Triplettzustände).
Hamiltonoperator für Moleküle
Es ist üblich, den Hamiltonoperator nicht in SI-Einheiten, sondern in sogenannten atomaren Einheiten zu schreiben, da dies die folgenden Vorteile birgt:
- Da Naturkonstanten nicht mehr explizit auftauchen, sind die Ergebnisse in atomaren Einheiten einfacher hinzuschreiben und unabhängig von der Genauigkeit der involvierten Naturkonstanten. Die in atomaren Einheiten berechneten Größen lassen sich dennoch einfach in SI-Einheiten zurückrechnen.
- Numerische Lösungsverfahren der Schrödingergleichung verhalten sich angenehmer, da die zu verarbeitenden Zahlen wesentlich näher bei der Zahl 1 liegen, als dies in SI-Einheiten der Fall ist.
Der Hamiltonoperator ergibt sich zu
mit
, der kinetischen Energie der Elektronen , der kinetischen Energie der Atomkerne , der potentiellen Energie der Wechselwirkung zwischen den Elektronen , der potentiellen Energie der Wechselwirkung zwischen den Kernen , der potentiellen Energie der Wechselwirkung zwischen den Elektronen und Atomkernen.
Hierbei sind
Die zeitunabhängige Schrödingergleichung ergibt sich dann zu
Siehe auch
Literatur
- Hermann Haken, Hans-Christoph Wolf: Molekülphysik und Quantenchemie: Einführung in die experimentellen und theoretischen Grundlagen. Springer 2006, ISBN 978-3-540-30315-2.