Boltzmann-Gleichung
Die Boltzmann-Gleichung, oder auch Boltzmannsche Transportgleichung, ist die grundlegende Integro-Differentialgleichung der kinetischen Gastheorie und Nicht-Gleichgewichts-Thermodynamik. Benannt wurde sie nach dem Physiker Ludwig Boltzmann.
Sie ist eine Gleichung für die statistische Verteilung von Teilchen in einem Medium. Eine wichtige Anwendung, die durch die Boltzmann-Gleichung beschrieben wird, ist etwa eine Strömung in einem verdünnten Gas. In der Praxis tritt dies zum Beispiel bei der Berechnungen von Phänomenen in der äußeren Erdatmosphäre auf, wie etwa beim Wiedereintritt des Space Shuttles in die Erdatmosphäre. Auch die Verteilung von Neutronen in einem Kernreaktor oder die der Wärmestrahlungsintensität in einer Brennkammer lassen sich durch die Boltzmann-Gleichung beschreiben. Die Boltzmann-Gleichung wird dann verwendet, wenn die mittlere freie Weglänge der Teilchen groß ist, d. h. wenn nur wenige Gasteilchen in einem gegebenen Volumen vorhanden sind, sodass die mittlere Stoßdauer klein ist gegen die mittlere Stoßzeit und nur Zweiteilchen-Stöße betrachtet werden müssen. In einem Medium, in dem dies nicht der Fall ist, kann man die wesentlich einfacheren Gleichungen der Kontinuumsmechanik verwenden (Navier-Stokes-Gleichung). In diesem Sinne ist die Boltzmann-Gleichung eine mesoskopische Gleichung, die zwischen der mikroskopischen Beschreibung einzelner Teilchen und der makroskopischen Beschreibung steht.
Gleichung
Die Boltzmann-Gleichung ist eine Gleichung für die Einteilchen-Verteilungsdichte
Die Gleichung hat die Form (
wobei
In engerem Sinn versteht man unter der Boltzmann-Gleichung die obige Gleichung zusammen mit einem speziellen Ansatz für das Kollisionsintegral (Boltzmannscher Stoßzahlansatz):
Dabei gibt
Die linke Seite der Boltzmann-Gleichung ist im Grunde nur die ausführliche Schreibweise für die totale Zeitableitung von
Sowohl die theoretische als auch die numerische Behandlung der Gleichung ist sehr aufwendig. Es gibt allerdings die bemerkenswerte Grenzwerteigenschaft, dass (unter gewissen Bedingungen) die Boltzmann-Gleichung in die Navier-Stokes-Gleichung übergeht, wenn die mittlere freie Weglänge klein wird.
Literatur
- Hartmut Haug, Statistische Physik - Gleichgewichtstheorie und Kinetik, Springer 2006, 2. Auflage, ISBN 3-540-25629-6.