Silber(I)-oxid

Kristallstruktur
Kristallstruktur von Silber(I)-oxid
__ Ag+      __ O2-
Allgemeines
Name Silber(I)-oxid
Andere Namen

Disilberoxid

Verhältnisformel Ag2O
CAS-Nummer 20667-12-3
Kurzbeschreibung

schweres, fast schwarzes, samtartiges Pulver[1]

Eigenschaften
Molare Masse 231,74 g·mol−1[2]
Aggregatzustand

fest

Dichte

7,2 g·cm−3[2]

Schmelzpunkt

230 °C (Zersetzung)[2]

Löslichkeit

praktisch unlöslich in Wasser[2]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [2]
03 – Brandfördernd 05 – Ätzend

Gefahr

H- und P-Sätze H: 272-314
EUH: 044
P: 210-​301+330+331-​305+351+338-​309+310 [2]
EU-Gefahrstoffkennzeichnung [3][2]
Brandfördernd Ätzend
Brand-
fördernd
Ätzend
(O) (C)
R- und S-Sätze R: 8-34-44
S: 26-36/37/39-45
MAK

0,01 mg·m−3[2]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche nicht möglich

Silber(I)-oxid (Ag2O) ist ein Reaktionsprodukt des Edelmetalls Silber mit Sauerstoff.

$ \mathrm{4 \ Ag + \ O_2 \longrightarrow 2 \ Ag_2O} $

Herstellung: Man gießt zu Silbernitrat-Lösung Natronlauge oder Kalilauge. Silberoxid fällt im Alkalischen als brauner Niederschlag aus:

$ \mathrm{2 \ Ag^+ + 2 \ OH^- \longrightarrow \ Ag_2O + \ H_2O} $

Aufschlämmungen von Silberoxid in Wasser reagieren deutlich alkalisch, da in Umkehrung der obigen Reaktion Silber- und Hydroxidionen gebildet werden[4].

In Umkehrung der Synthesereaktion wird Silber(I)-oxid beim Erhitzen wieder in die Elemente Silber und Sauerstoff zersetzt (Thermolyse).

$ \mathrm{2 \ Ag_2O \ \xrightarrow {\Delta T}\ 4 \ Ag + \ O_2} $

An der Luft reagiert Silber(I)-oxid mit Kohlenstoffdioxid zu Silbercarbonat:

$ \mathrm{Ag_2O + \ CO_2 \longrightarrow \ Ag_2CO_3} $

Verwendung

In der präparativen organischen Chemie wird Silber(I)-oxid in einer Variante der Williamson-Ethersynthese verwendet.[5]

Williamson silveroxid.svg

Silber(I)-oxid ist in Wärmeleitpaste zur Weiterleitung der Prozessorwärme an den Kühlkörpern im Computer enthalten, da es eine hohe Wärmeleitfähigkeit besitzt.

Einzelnachweise

  1.  Thieme Chemistry (Hrsg.): RÖMPP Online - Version 3.5. Georg Thieme Verlag KG, Stuttgart 2009.
  2. 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 Eintrag zu CAS-Nr. 20667-12-3 in der GESTIS-Stoffdatenbank des IFA, abgerufen am 06.08.2010 (JavaScript erforderlich)
  3. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  4. A.F.Holleman, E.Wiberg, Lehrbuch der Anorganischen Chemie, Walter de Gruyter & Co. Berlin 1995, 101. Auflage, ISBN 3-11-012641-9
  5. Organic Syntheses, Coll. Vol. 7, p.386 (1990); Vol. 60, p.92 (1981). Link

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

22.01.2021
Festkörperphysik - Quantenoptik - Thermodynamik
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
21.01.2021
Sonnensysteme - Planeten
Die Entstehung des Sonnensystems in zwei Schritten
W
21.01.2021
Exoplaneten
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Quantenphysik - Teilchenphysik
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Sterne - Astrophysik - Klassische Mechanik
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
19.01.2021
Sonnensysteme - Sterne - Biophysik
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
19.01.2021
Quantenoptik - Teilchenphysik
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
15.01.2021
Sterne - Strömungsmechanik
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
A
14.01.2021
Thermodynamik
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.