Polykondensation
Eine Polykondensation ist eine stufenweise, über stabile, aber weiterhin reaktionsfähige Zwischenprodukte ablaufende Kondensationsreaktion, bei der aus vielen niedrigmolekularen Stoffen (Monomere) unter Abspaltung einfach gebauter Moleküle (meist Wasser) Makromoleküle (Polymere/Copolymere) gebildet werden. Diese werden auch Polykondensate genannt. Neben Kunststoffen gibt es auch eine ganze Reihe natürliche Polymere, z. B. Polykieselsäuren, die durch Polykondensation entstehen.
Damit ein Monomer an der Reaktion teilnehmen kann, muss es mindestens zwei funktionelle Gruppen besitzen, die besonders reaktionsfähig sind (z. B. –OH, –COOH, –CO, …). Dieser Vorgang erfolgt mehrmals hintereinander, bis sich ein Makromolekül gebildet hat. Dabei unterscheidet man zwischen gleichartigen Monomeren und Monomeren verschiedener Art (z. B. Diol und Dicarbonsäure, Copolykondensation).
Im Gegensatz zur Polymergewinnung durch Kettenpolymerisation oder Polyaddition werden bei der Polykondensation ein oder mehrere Nebenprodukte frei. Diese Nebenprodukte (Wasser, Ammoniak, Alkohole, Chlorwasserstoff usw.) müssen kontinuierlich abgeführt werden, sonst stoppt die Polykondensation aus thermodynamischen Gründen bei sehr niedrigen Molmassen (Prinzip von Le Chatelier).
Der Reaktionsumsatz muss mindestens 99 % betragen, um ein echtes Polykondensat hoher molarer Masse zu bekommen. Weiterhin muss das Verhältnis der eingesetzten Mengen an jeweiligem Monomer so exakt wie möglich dem durch die Reaktion vorgegebenen stöchiometrischen Verhältnis angepasst werden, sonst gelangt man zu einem Punkt, an dem alle Oligomere die gleichen aktiven Enden besitzen und nicht mehr miteinander reagieren können (Carothers-Gleichung).
Die Polykondensation reagiert meist sehr empfindlich auf Verschmutzungen der Edukte.
Historische Informationen
Die erste Polykondensation gelang dem deutschen Chemiker und Nobelpreisträger Adolf von Baeyer 1872. Er beschrieb die Polykondensation von Phenol und Formaldehyd zu Bakelit und legte damit die Grundlage für die heutige Polymerchemie. Im großen Maßstab produziert wurde Bakelit erstmals 1909 von Leo Hendrik Baekeland und wurde jahrzehntelang in vielen Bereichen eingesetzt. Es wird auch heute noch hergestellt.
Anwendung
Die Polykondensation ist ein wichtiges Verfahren der Polymerchemie, mit dem zahlreiche wichtige Kunststoffe, wie zum Beispiel Phenoplast (z. B. Bakelit), Polyester und Polyamide hergestellt werden.[1] Von großer Bedeutung ist die Polykondensation auch bei der Herstellung von Klebstoffen, wie beispielsweise Phenolformaldehydklebstoffen, und in der Herstellung von Bremsbelägen für Kraftfahrzeuge.
Beispiele
Phenoplast
Erste Stufe
Durch Reaktion von Phenol mit einem Aldehyd entsteht unter Mitwirkung eines Katalysators ein erstes Zwischenprodukt.
Zweite Stufe
Dieses Zwischenprodukt reagiert unter Abspaltung von Wasser nochmals mit Phenol. Dabei handelt es sich um eine Kondensation.
Räumliche Vernetzung
Laufen diese beiden Stufen mehrmals mit dem zweiten Zwischenprodukt an Stelle von Phenol in Stufe 1 ab, dann kommt es zu einer Copolymerisation und einer räumlichen Vernetzung und man spricht von Polykondensation. Dabei entsteht ein Phenoplast (auch Phenolharz, Phenol-Formaldehyd-Kondensat oder Bakelit genannt).
Polyester
Durch Reaktion von zwei Diolen (Verbindungen mit zwei Alkoholgruppen, hier Ethandiol) mit Carbonsäuren (hier Terephthalsäure) entsteht unter Abspaltung von Wasser ein Polyester (z. B. Polyethylenterephthalat (PET)). Läuft diese Reaktion unter Einbeziehung des Reaktionsproduktes als Ausgangsstoff mehrstufig ab, handelt es sich um eine Polykondensation. Wird statt Ethandiol beispielsweise Glycerin als Ausgangsstoff verwendet, dann kommt es zu einer räumlichen Vernetzung und der Entstehung eines Duroplast.
DNA/RNA
Bei der Replikation der DNA und der Transkription der RNA handelt es sich auch um eine Polykondensation, bei der die Monomere als Nucleotide bezeichnet werden und Wasser abgespalten wird. Diese Nucleotide entstehen auch durch eine einfache Kondensation aus Phosphorsäure, Pentose und einer von fünf Nukleobasen unter Abspaltung von Wasser.
Diese Reaktionen laufen unter dem Einfluss von Biokatalysatoren (Enzyme) ab, die auch die genaue Anordnung der verschiedenen Nukleobasen steuern. Weiterhin kann man diese Reaktion auch als eine Neutralisationsreaktion der Nukleinsäure mit den Nukleinbasen verstehen.
weitere Beispiele
- Diamine reagieren mit Dicarbonsäuren durch Polykondensation zu Polyamiden (z. B. Nylon).
- Polykondensation von Einfachzuckern wie Glucose zu Amylose und weiter zu Amylopectin (bei α-Glucose) oder Zellulose (bei β-Glucose)
- Polypeptidbildung aus Aminosäuren zu Proteinen mit Bildung von Peptidbindungen
Technische Verfahren
- Lösungspolykondensation
- Schmelzpolykondensation
- Grenzflächenpolykondensation
- Festphasenpolykondensation
- Fällungspolykondensation
Siehe auch
- Polymerchemie
- Kondensationsreaktion
- Substitutionsreaktion
- Polymerisation/Copolymerisation
- Polyaddition
Einzelnachweise
- ↑ M. D. Lechner, K. Gehrke und E. H. Nordmeier: Makromolekulare Chemie, 4. Auflage, Birkhäuser Verlag, 2010, S. 119−136, ISBN 978-3-7643-8890-4.