Orientierungspolarisation

Erweiterte Suche

Dipolmoment eines H2O-Moleküls.
rot: negative Teilladung
blau: positive Teilladung
grün: gerichteter Dipol

Als Orientierungspolarisation bezeichnet man die durch Ausrichtung permanenter elektrischer Dipole (z. B. Wasser) in einem elektrischen Feld bewirkte Polarisation.

Die thermische Bewegung der Dipole wirkt ihrer Ausrichtung entgegen. Diese Temperaturabhängigkeit der Polarisation wird durch die Debye-Gleichung beschrieben. Permanente Dipolmomente sind im Allgemeinen viel größer als induzierte Dipolmomente (etwa Faktor 103).

Kehrt man die Richtung des elektrischen Feldes um, so müssen sich die ganzen Moleküle umorientieren (Relaxationsprozess). Aufgrund ihrer relativ großen Trägheit benötigen die Dipole eine gewisse Zeit, um sich neu auszurichten (typische Rotationszeit eines Moleküls in Flüssigkeit 10−9 -10−11 s). Bei hochfrequenter Änderung des elektrischen Feldes (z. B. ab Mikrowellen-Bereich) ist also keine Orientierungspolarisation mehr, sondern nur noch Verschiebungspolarisation zu beobachten und die Debye-Gleichung geht in die Clausius-Mossotti-Gleichung über.

Herleitung der Temperaturabhängigkeit

Die Wechselwirkungsenergie W eines permanenten elektrischen Dipols mit einem äußeren elektrischen Feld ist:

$ W=-{\vec {p}}\cdot {\vec {E}}=-pE\cos \vartheta $

Der vollständigen Ausrichtung im elektrischen Feld steht die thermische Energie $ W\propto kT $ entgegen, die eine Gleichverteilung aller Richtungen anstrebt. Können die Dipole frei rotieren und befinden sich bei der Temperatur $ T $ im thermodynamischen Gleichgewicht, so ist die Wahrscheinlichkeit einen Dipol mit der Energie $ W $ bzw. dem Winkel $ \vartheta $ anzutreffen, proportional zum Boltzmann-Faktor:

$ \exp \left(-{\frac {W}{kT}}\right)=\exp \left({\frac {pE\cos \vartheta }{kT}}\right) $

Für ein konstantes elektrisches Feld in z-Richtung $ {\vec {E}}=E{\hat {e}}_{z} $ ist das mittlere Dipolmoment in z-Richtung gleich:

$ \left\langle p_{z}\right\rangle =p\left\langle \cos \vartheta \right\rangle =p\,{\frac {\int _{0}^{\pi }{\cos \vartheta \;\operatorname {e} ^{pE\cos \vartheta /kT}\sin \vartheta \;\mathrm {d} \vartheta }}{\int _{0}^{\pi }{\operatorname {e} ^{pE\cos \vartheta /kT}\sin \vartheta \;\mathrm {d} \vartheta }}}=p\left[\coth \left({\frac {pE}{kT}}\right)-{\frac {kT}{pE}}\right] $

Die Summe über alle mittleren Dipolmomente pro Volumen ergibt die makroskopische Polarisation (N ist eine Dichte, nämlich Dipole pro Volumen):

$ P=N\left\langle p_{z}\right\rangle =Np\left[\coth \left({\frac {pE}{kT}}\right)-{\frac {kT}{pE}}\right] $

Der in eckigen Klammern stehende Ausdruck ist die Langevin-Funktion. Für große Temperaturen bzw. kleine Feldstärken kann man die Langevin-Funktion entwickeln:

$ L(x)=\coth(x)-{\frac {1}{x}}\ {\overset {x\ll 1}{\mathop {=} }}\ {\frac {x}{3}}-{\frac {x^{3}}{45}}+{\mathcal {O}}(x^{5}) $     mit     $ x={\frac {pE}{kT}} $

Somit folgt für die makroskopische Polarisation mit $ pE\ll kT $ in erster Näherung:

$ P={\frac {Np^{2}}{3kT}}E $

Bei Zimmertemperatur beträgt $ kT $ etwa 1/40 eV = 0,025 eV und die Orientierungsenergie der Dipole mit Dipolmoment ca. 10-30 A·s·m bei einer Feldstärke von 107 V/m beträgt etwa 0,00062 eV. Somit ist $ pE/kT=1/40 $ und obige Annahme erfüllt $ \ll 1 $.

Für schwache elektrische Feldstärken ist die Polarisation eine lineare Funktion des elektrischen Feldes

$ {\vec {P}}=\varepsilon _{0}\chi {\vec {E}} $

Mit der vorherigen Gleichung erhält man eine temperaturabhängige elektrische Suszeptibilität

$ \chi ={\frac {Np^{2}}{3\varepsilon _{0}kT}} $

Die Orientierungspolarisation ist also proportional zur reziproken Temperatur (Curie-Gesetz). Man beachte, dass dieses Ergebnis nur für Dipole gilt, die frei rotieren können. Bei einem Festkörper ist dies im Allgemeinen nicht gegeben.

Siehe auch

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.