James Prescott Joule

Erweiterte Suche

James P. Joule

James Prescott Joule (* 24. Dezember 1818 in Salford bei Manchester; † 11. Oktober 1889 in Sale (Greater Manchester), Aussprache: dʒuːl[1]) war ein britischer Physiker.

Leben und Wirken

Joule war der dritte Sohn eines Brauereibesitzers. Später übernahm und betrieb er diese Brauerei zusammen mit seinem Bruder. Ab 1834 studierte Joule bei John Dalton Mathematik und Naturwissenschaften. 1837 richtete er sich ein chemisches Labor ein, das später von verschiedenen Vereinen finanziert wurde. Bald heiratete er, aber seine Ehegattin verstarb bereits 1854. 1847 begann seine Zusammenarbeit mit William Thomson, 1. Baron Kelvin. Von 1872 an plagten ihn gesundheitliche Probleme. Als er in späteren Jahren in finanzielle Schwierigkeiten geriet, gewährte ihm die britische Königin Victoria ab 1878 eine Pension.

1838 begann Joule auf der Grundlage der Arbeiten von William Sturgeon mit elektromagnetischen Experimenten, die er der Wärmelehre wegen aufgab. Ab 1840 widmete er sich Untersuchungen über die Wärmewirkungen des Stroms. Dabei bemerkte er die Erwärmung des stromdurchflossenen Leiters (Joulesche Wärme). Ebenfalls 1840 formulierte er das Joulesche Gesetz, nach dem die Wärme proportional dem Produkt aus dem Quadrat der Stromstärke und dem Widerstand des Stromkreises ist.

Joule-Apparat zum Nachweis der Äquivalenz von mechanischer Arbeit und Wärme (mechanisches Wärmeäquivalent).

In den folgenden Jahren maß er die Wärmeentwicklung bei verschiedenen Vorgängen. Er vermutete früh die Existenz einer Äquivalenz von mechanischer Arbeit und Wärme (mechanisches Wärmeäquivalent) und führte dazu 1843 einen klassischen und nach ihm benannten Versuch aus: Einer thermisch isolierten Wassermenge wurde eine definierte Menge mechanischer Energie zugeführt und anschließend die Temperaturerhöhung gemessen. Auf diese Weise konnte er die Existenz einer Wärmeäquivalenz nachweisen, die ihm zu Ehren in der Einheit Joule gemessen wird. Diesen Nachweis erbrachte 1841 bereits der Heilbronner Arzt Robert Mayer (1814–1878), der damit allerdings keine Anerkennung fand.

1846 entdeckte Joule mit der Längenänderung magnetisierter ferromagnetischer Stoffe die Magnetostriktion (Joule-Effekt), die bei der Erzeugung von Ultraschallwellen Anwendung fand. Ab 1852 arbeitete Joule gemeinsam mit Thomson an Experimenten zur Bestätigung thermodynamischer Theorien. 1852 zeigten die beiden Forscher, dass ein Gas, das sich ungestört ausdehnen kann, sich abkühlt. Dieser Joule-Thomson-Effekt war ein Beweis für die Annahme, dass zwischen den Gasmolekülen schwache Kräfte wirksam sind. Anwendung fand der Satz bei der Gasverflüssigung und in der Kältetechnik. Außerdem konzipierte Joule den idealen Kreisprozess der Heißluftmaschine (Joule-Prozess).

Ehrungen

Ab 1850 war Joule Mitglied der Royal Society, die ihn 1852 mit der Royal Medal, 1870 mit der Copley Medal auszeichnete. Zu seinen Ehren heißt die SI-Einheit der Energie, Arbeit und Wärmemenge „Joule“ (Einheitenzeichen J).

Werke

  • New theory of heat, 1850

Einzelnachweise

  1. Zitat Oxford English Dictionary (OED): "Although some people of this name call themselves dʒaʊl, and others dʒəʊl, it is almost certain that J. P. Joule (and at least some of his relatives) used dʒuːl.

Weblinks

 Commons: James Prescott Joule – Sammlung von Bildern, Videos und Audiodateien
Vorlage:Commonscat/WikiData/Difference
 Wikisource: James Prescott Joule – Quellen und Volltexte


Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?