Joule-Kreisprozess

Erweiterte Suche

(Weitergeleitet von Joule-Prozess)

Der Joule-Kreisprozess oder Brayton-Kreisprozess ist ein rechtslaufender thermodynamischer Kreisprozess, der nach James Prescott Joule beziehungsweise George Brayton benannt ist. Er ist ein Vergleichsprozess für den in Gasturbinen und Strahltriebwerken ablaufenden Vorgang und besteht aus zwei isentropen und zwei isobaren Zustandsänderungen.

Beschreibung

Prinzipskizze und Zustandsdiagramme
Mechanische Umsetzung des geschlossenen Joule-Prozess
Joule-Prozess im p-v-Diagramm
Joule-Prozess im T-s-Diagramm

Die vier Prozessschritte sind im Einzelnen:

  • 1 - 2 isentrope Kompression (dp>0, dQ=0, dv<0),
    • Durch adiabaten Verdichter
    • Zufuhr der Verdichterarbeit $ +w_{t12} $
      • Druck steigt von $ p_1 $ auf $ p_2 $
      • Temperatur steigt von $ T_1 $ auf $ T_2 $
      • Spezifische Volumen sinkt von $ v_1 $ auf $ v_2 $
      • Spezifische Entropie bleibt konstant
  • 2 - 3 isobare Wärmezufuhr (dp=0, dQ>0, dv>0),
    • Durch Wärmetauscher (Brennkammer)
    • Zufuhr der spezifischen Wärme $ +q_{23} $
      • Druck bleibt konstant
      • Temperatur steigt von $ T_2 $ auf $ T_3 $
      • Spezifische Volumen steigt von $ v_2 $ auf $ v_3 $
      • Spezifische Entropie steigt von $ s_2 $ auf $ s_3 $
  • 3 - 4 isentrope Expansion (dp<0, dQ=0, dv>0),
    • Durch adiabate Turbine
    • Entzug der Turbinenarbeit $ w_{t34} $
      • Druck sinkt von $ p_3 $ auf $ p_4 $
      • Temperatur sinkt von $ T_3 $ auf $ T_4 $
      • Spezifische Volumen steigt von $ v_3 $ auf $ v_4 $
      • Spezifische Entropie bleibt konstant
  • 4 - 1 isobare Wärmeabfuhr (dp=0, dQ<0, dv<0).
    • Durch Wärmetauscher (Kühler)
    • Entzug der spezifischen Wärme $ q_{41} $
      • Druck bleibt konstant
      • Temperatur sinkt von $ T_4 $ auf $ T_1 $
      • Spezifische Volumen sinkt von $ v_4 $ auf $ v_1 $
      • Spezifische Entropie sinkt von $ s_4 $ auf $ s_1 $

Die vom Linienzug (1 - 2 - 3 - 4) umschlossene Fläche entspricht der spezifischen Prozessarbeit w.

Im Gegensatz zum geschlossenen Joule-Prozess entfällt im offenen die Kühlung, da kontinuierlich kaltes Gas angesaugt und verdichtet wird.

Die Wärmezufuhr, die hier nur schematisch dargestellt ist, wird tatsächlich durch die Verbrennung eines meist fossilen Energieträgers realisiert. In Strahltriebwerken wird hierzu in der Regel Kerosin verwendet, das bei der Erdöldestillation eine Zwischenfraktion von Benzin und Diesel darstellt.

Die folgenden Bilder zeigen maßstäbliche Diagramme und eine Tabelle mit den Zustandsgrößen und Prozessdaten aus einer rechenaktiven Datei.

Zustandsdiagramme und Datentabelle
p-v-Diagramm
T-s-Diagramm
Datentabelle

Wirkungsgrad

Wirkungsgrad im einstufigen Joule-Kreisprozess

Allgemein ist der thermische Wirkungsgrad definiert als das Verhältnis von Nutzen zu Aufwand.

$ \eta_{th} = \frac{\mbox{Nutzen}}{\mbox{Aufwand}} $

Beim Joule-Prozess besteht der Nutzen in der abgegebenen technischen Arbeit wNutz, der Aufwand besteht in der benötigten Wärme qzu, so dass sich formulieren lässt:

$ \eta_{th} = \frac{w_{Nutz}}{q_{zu}} = \frac{q_{zu}-|q_{ab}|}{q_{zu}} $

Die bilanzierten Wärmen ersetzt man durch die Enthalpie-Differenzen.

$ \ q_{zu}=h_{3}-h_{2} $
$ \ q_{ab}=h_{4}-h_{1} $

Für ein ideales Gas gilt zudem, dass die spezifische Enthalpie h nur eine Funktion der Temperatur und unabhängig vom Druck ist.

$ \ \Delta h=c_{p} \Delta T $

deshalb ist

$ \ \eta_{th_{Joule}}=1-\frac{T_{4} - T_{1}}{T_{3} - T_{2}}=1-\frac{T_{1}}{T_{2}} $

Die letzte Beziehung ergibt sich aus der Verwendung der Gleichung für die Temperaturänderung bei isentroper Kompression.

$ \ \frac{T_{1}}{T_{2}}= \bigg(\frac{p_{1}}{p_{2}}\bigg)^\frac{\kappa-1}{\kappa}= \frac{T_{4}}{T_{3}} $
Abhängigkeit des Joule-Prozess vom Verdichtungsverhältnis ($ \kappa = 1,4 $)

$ \kappa $ beträgt unter Normalbedingungen für Edelgase wie Helium und Argon ca. 1,66; für 2-atomige Gase wie Wasserstoff, Sauerstoff, Luft ca. 1,4 und für 3-atomige Gase mit starren Molekülen wie Wasserdampf ca. 1,33 [1] (siehe Herleitung der Wärmekapazität von idealen Gasen). Daher kann ein Joule-Kreisprozess am effektivsten mit Edelgasen betrieben werden.

Wenn allerdings die Wärmekapazität, die Wärmeleitfähigkeit und die Viskosität für einen realen Joule-Kreisprozess mit beachtet wird, dann ist Wasserstoff ebenfalls ein sehr vorteilhaftes Arbeitsmedium.


Für eine durch den Werkstoff vorgegebene maximale Temperatur T3 lässt sich eine optimale Temperatur T2 nach der Kompression ermitteln, bei der der Kreisprozess die größtmögliche Nutzarbeit abwirft:

$ T_{2,opt}=\sqrt{T_{1}T_{3}} $

Möglichkeit der Erhöhung des Wirkungsgrads durch regenerative Wärmeübertragung und durch einen mehrstufigen Joule-Kreisprozess

Da am Ausgang der Expansionsmaschine meistens eine Temperatur herrscht, die oberhalb der Temperatur am Ausgang des Kompressors liegt, kann über einen Wärmetauscher hier eine rekuperative Wärmeübertragung stattfinden. Diese Wärmemenge muss dann nicht von außen zugeführt werden.

Der Wirkungsgrad berechnet sich dann wie folgt:

$ \eta_\text{regenerativ}=1-\frac{T_\text{min}}{T_\text{max}}\frac{p_\text{max}}{p_\text{min}}^{\frac{\kappa-1}{\kappa}} $

Durch eine mehrstufige Verdichtung mit jeweiliger Wärmeabfuhr und einer mehrstufigen Expansion mit jeweiliger Wärmezufuhr und Regeneration kann der Wirkungsgrad

  • durch die Regeneration zu überbrückende Temperaturbereich vergrößert und
  • durch die Wärmeabfuhr kann die Verdichtungsarbeit vermindert werden sowie
  • durch die Wärmezufuhr in den Expansionsstufen kann die Entspannungsarbeit vergrößert werden.

Bei unendlich vielen Stufen der Kompression - Wärmeabfuhr geht der Prozess in eine Isotherme Verdichtung über. Der Prozess wird dann durch den Ackeret-Keller oder Ericsson-Kreisprozess beschrieben, dessen Wirkungsgrad sich analog zum Carnot Prozess berechnet:

$ \eta_\text{Carnot}=1-\frac{T_\text{min}}{T_\text{max}} $

Wartungsarme Wärmekraftmaschinen nach dem Joule-Kreisprozess

Wie eine Stirlingwärmekraftmaschine kann eine Wärmekraftmaschine nach dem Joule-Kreisprozess mit einer externen Wärmezufuhr betrieben werden und hat damit viele gemeinsame Vorteile mit einem Stirlingmotor.

Für die Kerntechnik (Atomkraftwerke) wurden Turbokompressoren für Helium entwickelt, die mit magnetischen Lagern und permamentmagnetischen Notlauflagern ausgestattet werden können, wodurch in das Arbeitsgas keine Flüssigkeiten wie Schmieröle eingebracht werden müssen, die den Gaskreislauf verunreinigen können.

Damit ist eine Gasturbine denkbar, die nach Joule-Kreisprozess als Vergleichsprozess mit Helium oder Wasserstoff als Arbeitsgas arbeitet, die wartungsarm, effizient und eine hohe Energiedichte aufweisen könnte.

Der reale Gasturbinenprozess

Vergleichsprozess und realer Prozess im h-s-Diagramm (h ist bei Gasen angenähert proportional der Temperatur T)

Der reale Gasturbinenprozess unterscheidet sich durch die Irreversibilität der technischen Zustandsänderungen (1-2, 3-4) vom theoretischen Joule-Prozess. Darüber hinaus treten Druckverluste in der Brennkammer (2-3) (bzw. dem Wärmeübertrager 4-1 im geschlossenen Gasturbinenprozess) auf. Die Druckänderung durch die Wärmeverluste in der Brennkammer können heutzutage durch geeignete Maßnahmen (hochtemperaturfeste Keramik) minimiert werden, während der Druckverlust im Wärmeübertrager (4-1) nur bedingt reduzierbar ist. Die genannten Unterschiede sind anschaulich im T-s-Diagramm darstellbar (T-Temperatur, s-spezifische Entropie).[2]

Die technischen Arbeiten für den Verdichter und die Turbine werden im h,s-Diagramm veranschaulicht (h-spezifische Enthalpie, s-spezifische Entropie).

Andere Vergleichsprozesse

Weblinks

 Commons: Joule-Prozess – Sammlung von Bildern, Videos und Audiodateien
Vorlage:Commonscat/WikiData/Difference
  1. Liste der Isentropenexponenten für verschiedene Gase
  2. Vergleich zwischen realem und idealem Gasturbinen-Prozess im T,s-Diagramm

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

24.01.2022
Satelliten | Raumfahrt | Astrophysik
James Webb Weltraumteleskop am Ziel
Die Wissenschaft kann möglicherweise bald erforschen, wie das Universum seinen Anfang nahm, denn das neue Weltraumteleskop James Webb hat seine Endposition erreicht.
17.01.2022
Quantenphysik | Teilchenphysik
Ladungsradien als Prüfstein neuester Kernmodelle
Ein internationales Forschungsprojekt hat die modernen Möglichkeiten der Erzeugung radioaktiver Isotope genutzt, um erstmals die Ladungsradien entlang einer Reihe kurzlebiger Nickelisotope zu bestimmen.
13.01.2022
Sonnensysteme | Planeten | Elektrodynamik
Sauerstoff-Ionen in Jupiters innersten Strahlungsgürteln
In den inneren Strahlungsgürteln des Jupiters finden Forscher hochenergetische Sauerstoff- und Schwefel-Ionen – und eine bisher unbekannte Ionenquelle.
12.01.2022
Schwarze Löcher | Relativitätstheorie
Die Suche nach einem kosmischen Gravitationswellenhintergrund
Ein internationales Team von Astronomen gibt die Ergebnisse einer umfassenden Suche nach einem niederfrequenten Gravitationswellenhintergrund bekannt.
11.01.2022
Exoplaneten
Ein rugbyballförmiger Exoplanet
Mithilfe des Weltraumteleskops CHEOPS konnte ein internationales Team von Forschenden zum ersten Mal die Verformung eines Exoplaneten nachweisen.
07.01.2022
Optik | Quantenoptik | Wellenlehre
Aufbruch in neue Frequenzbereiche
Ein internationales Team von Physikern hat eine Messmethode zur Beobachtung licht-induzierter Vorgänge in Festkörpern erweitert.
06.01.2022
Elektrodynamik | Quantenphysik | Teilchenphysik
Kernfusion durch künstliche Blitze
Gepulste elektrische Felder, die zum Beispiel durch Blitzeinschläge verursacht werden, machen sich als Spannungsspitzen bemerkbar und stellen eine zerstörerische Gefahr für elektronische Bauteile dar.
05.01.2022
Elektrodynamik | Teilchenphysik
Materie/Antimaterie-Symmetrie und Antimaterie-Uhr auf einmal getestet
Die BASE-Kollaboration am CERN berichtet über den weltweit genauesten Vergleich zwischen Protonen und Antiprotonen: Die Verhältnisse von Ladung zu Masse von Antiprotonen und Protonen sind auf elf Stellen identisch.
04.01.2022
Milchstraße
Orions Feuerstelle: Ein neues Bild des Flammennebels
Auf diesem neuen Bild der Europäischen Südsternwarte (ESO) bietet der Orion ein spektakuläres Feuerwerk zur Einstimmung auf die Festtage und das neue Jahr.
03.01.2022
Sterne | Elektrodynamik | Plasmaphysik
Die Sonne ins Labor holen
Warum die Sonnenkorona Temperaturen von mehreren Millionen Grad Celsius erreicht, ist eines der großen Rätsel der Sonnenphysik.