Thermodynamisches System

Erweiterte Suche

(Weitergeleitet von Geschlossenes System)
Übersicht über verschiedene thermodynamische Systeme

Ein thermodynamisches System ist ein räumlich eingegrenzt betrachtetes physikalisches System, für das eine Energiebilanz – beim offenen System zusammen mit einer Stoffbilanz – erstellt werden kann. Beim geschlossenen System werden nur die Energien (Wärme und Arbeit) betrachtet, die über die Systemgrenze fließen und dadurch mit der Änderung der inneren Energie den Zustand des Systems verändern. Bei einem isolierten System findet keinerlei Austausch mit der Umgebung statt.

Offenes System

Liegt ein offenes System vor, so kann das System sowohl Energie als auch Materie mit seiner Umgebung austauschen. Ein Beispiel für ein offenes System, in dem ein Vorgang kontinuierlich abläuft, ist eine Turbine. Im stationären Betrieb wird das System von einem konstanten Massenstrom durchflossen. Dabei bleiben die Zustände des Fluids am Eintritt und am Austritt jeweils konstant und das Fluid ändert seinen Zustand auf dem Weg durch das System. Die Wellenarbeit wird beim Verdichten dem System zugeführt, beim Expandieren abgegeben. Sie wird technische Arbeit genannt.

Sie wird beschrieben durch:

$ \qquad \mathrm \delta W_\mathrm{t} = V \cdot dp + \delta W_\mathrm{diss}+ \delta E_\mathrm{a} $

(Hierbei ist $ \delta E_\mathrm{a} $ die Änderung der äußeren Energien. Die Definition der technischen Arbeit ist in der Literatur unterschiedlich. Verschiedentlich versteht man darunter nur den ersten Term $ Vdp $).

Neben dieser Arbeit treten am Eintritt und Austritt des Systems Verschiebearbeiten auf. Hat im stationären Betrieb das Masseteilchen $ \Delta m\ $ am Eintritt das Volumen $ \Delta V_\mathrm{1}\ $ und am Austritt $ \Delta V_\mathrm{2}\ $, so ist die Verschiebearbeit am Eintritt $ p_\mathrm{1}\cdot\Delta V_\mathrm{1} $, entsprechend am Austritt $ -p_\mathrm{2}\cdot\Delta V_\mathrm{2} $

Diese Verschiebearbeiten sind neben der inneren Energie $ U $ in den jeweiligen Enthalpien enthalten. Mit der Definition der Enthalpie

$ H = U +p\cdot V $

ist die Bilanz für das offene stationäre System:

$ \dot{Q}+ \dot{W_\mathrm{t}} = \dot H_\mathrm{2}-\dot H_\mathrm{1}+ \dot m\cdot g\cdot\left(z_\mathrm{2}-z_\mathrm{1}\right) + {\dot m\over 2}\cdot\left( c_\mathrm{2}^2- c_\mathrm{1}^2\right) $

und mit dem Symbol für die Leistung

$ \dot{W_\mathrm{t}}=P $

und der äußeren Energie

$ \dot{m}\cdot g\cdot z + {\dot m\over 2}\cdot c^2= \dot E_\mathrm{a} $

lautet der erste Hauptsatz für die Anwendung am offenen System:

$ \dot{Q}+ P = \dot H_\mathrm{2}-\dot H_\mathrm{1}+ \Delta\dot E_\mathrm{a} $

Die in der Skizze als Beispiel für ein offenes System gezeigte Verbrennungskraftmaschine ist genau genommen abwechselnd offen und geschlossen. Nur über größere Zeiträume hinweg kann sie als offenes System betrachtet werden.

Geschlossenes System

Als geschlossen wird immer dann ein System bezeichnet, wenn keine Masse die Systemgrenze überschreitet. Wärme, Strahlung und Arbeiten können zu- oder abgeführt werden. Als Arbeiten kommen in Betracht:

  1. Die reversibel zugeführte Volumenänderungsarbeit, auch Volumenarbeit genannt. Beispiel in der Skizze: Mit dem Kolben wird reibungsfrei das im Zylinder befindliche Gas verdichtet. $ \qquad \mathrm \delta W_\mathrm{V} = - p \cdot dV $ Da $ dV $ negativ ist, ist also die zugeführte Arbeit positiv.
  2. Dissipierte Arbeit. Als Beispiel sei ein Ventilator oder eine elektrische Heizung in einem Raum mit starrer Systemgrenze genannt. Über die Systemgrenze fließt Arbeit (Exergie), die innerhalb des Systems dissipiert wird. Die Arbeit durch Reibungskräfte zwischen Kolben und Zylinder gehört auch zu diesen irreversibel zugeführten Energien.

Da nach dem ersten Hauptsatz der Thermodynamik Energie weder erzeugt, noch vernichtet werden kann, erhöht sich die innere Energie um die zugeführten Energien. Die Bilanz für das ruhende geschlossene System lautet:

$ Q_\mathrm{1,2} + W_\mathrm{1,2}\ = U_\mathrm{2}-U_\mathrm{1} $

mit

$ W_\mathrm{1,2}\ = W_\mathrm{diss1,2}+W_\mathrm{V1,2} $

(Die Indizes 1 und 2 benennen jeweils den Anfangs- und den Endzustand, der Index 1,2 den Weg von 1 nach 2)

Werden durch den Einfluss der zugeführten Energien die äußere Energien des Systems, also die potentielle Energie und/oder die kinetische Energie des Systems verändert, so ist die Bilanz nach dem 1. Hauptsatz für das geschlossene System:

$ Q_\mathrm{1,2} + W_\mathrm{1,2} = U_\mathrm{2}-U_\mathrm{1}+ m\cdot g\cdot\left(z_\mathrm{2}-z_\mathrm{1}\right) + {m\over 2}\cdot\left( c_\mathrm{2}^2- c_\mathrm{1}^2\right) $

Isoliertes System

Als abgeschlossen oder isoliert bezeichnet man ein geschlossenes System dann, wenn es energiedicht ist (4. Beispiel in der Skizze). Der Idealfall bedarf keiner näheren Betrachtung, da in der Energiebilanz alle Terme verschwinden.

Literatur

Siehe auch

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?