Innere Energie

Erweiterte Suche

Die innere Energie U – auch thermodynamische Energie genannt – ist eine physikalische Größe. Ihre Änderung ΔU ist gleich der Summe der Wärme Q, die einem System zugeführt wird, und der Arbeit W, die am System verrichtet wird.[1]

$ \mathrm {\ \Delta U=Q+W} $

Diese Gleichung besagt, dass sich die innere Energie eines Systems erhöht, wenn ihm Wärme zugeführt oder auf das System Druck ausgeübt wird, da die von außen aufgebrachte Energie im System gespeichert wird.

Definition der inneren Energie

Je mehr über den Aufbau der Materie bekannt wurde, desto mehr wurden die Ursachen für die innere Energie erkannt. Physikalisch gesprochen hat man es mit einem Vielteilchensystem zu tun, das eine abzählbare Folge von Energiewerten, $ E_{i} $, besitzt. Die innere Energie, meist als $ U $ bezeichnet, ist der thermische Mittelwert dieser Energiewerte, $ U\equiv \langle E_{i}\rangle =\sum \limits _{i}\,p_{i}\cdot E_{i} $, wobei die $ p_{i} $ Wahrscheinlichkeiten sind. Im Einzelnen unterscheidet man den physikalisch-thermischen, den chemischen und den kernphysikalischen Anteil der inneren Energie sowie die Wechselwirkungen mit äußeren Feldern.

Zusammensetzung der inneren Energie

Die Summe aus Lage-, Bewegungs- und Spannenergie ist bei reibungsfreien Vorgängen in einem abgeschlossenen System konstant.

Änderung der inneren Energie in thermodynamischen Prozessen

Der Erste Hauptsatz der Thermodynamik beschreibt eine Änderung der inneren Energie als Summe der Wärmezufuhren und -entzüge sowie der verrichteten Arbeit am entsprechenden (geschlossenen) System:

$ \qquad \mathrm {d} U=\delta Q+\delta W=TdS-pdV. $

Hier schreibt man auf der rechten Seite jeweils $ \delta $ statt $ \mathrm {d} $, weil es sich nicht wie bei $ {\rm {d}}U $ um totale Differentiale handelt, da Q und W Prozessgrößen sind, U dagegen eine Zustandsgröße ist.

Folglich

$ \qquad \mathrm {\Delta } U=Q+W=\int {TdS}-\int {pdV} $

und bei stationären Kreisprozessen mit $ \qquad \mathrm {\Delta } U=0 $

$ 0=Q_{1}-\left|Q_{2}\right|+W_{1}-\left|W_{2}\right|\,, $

wobei die mit 1 indizierten Energien zugeführt werden (positiv) und die mit 2 indizierten abgeführt (negativ). (vergl. Energiebilanz für Kreisprozesse).

Bei variabler Stoffmenge hat man das totale Differential

$ \qquad \mathrm {d} U=T\mathrm {d} S-p\mathrm {d} V+\mu \mathrm {d} N\,, $

mit der absoluten Temperatur T, der Entropie S, dem Druck p und dem chemischen Potential $ \mu $. Also: $ \oint \limits _{W}{\rm {d}}U=0 $ auf jedem geschlossenen Weg $ W $, wie immer man die Differentiale $ \mathrm {d} S $, $ \mathrm {d} V $ und $ \mathrm {d} N $ wählt.

Bisher wurde eine einzige Stoffsorte vorausgesetzt ($ K=1 $). Hat man es mit mehreren Stoffsorten zu tun, verallgemeinert sich die differentielle Aussage wie folgt:

Innere Energie $ U $ und ihre natürlichen Variablen, Entropie $ S $, Volumen $ V $ und Stoffmenge $ N $, sind allesamt extensive Zustandsgrößen. Die innere Energie ändert sich bei einer Skalierung des thermodynamischen Systems proportional zur entsprechenden Zustandsgröße (S,V). Der Proportionalitätsfaktor ist $ \alpha $. Daraus folgt:

$ U(\alpha \cdot S,\alpha \cdot V,\alpha \cdot (N_{1},...,N_{K}))=\alpha \cdot U(S,V,N_{1},...,N_{K}) $

mit $ N_{i} $ ($ {i=1,...,K} $) : Stoffmenge der Teilchen vom Typ $ i $. Eine solche Funktion wird homogene Funktion ersten Grades genannt.

Mit dem Euler-Theorem und dem ersten Hauptsatz folgt die Euler-Gleichung für die innere Energie:[2]

$ U=TS-pV+{\sum _{i=1}^{K}}\,\mu _{i}N_{i}. $

In der Chemie für ein ideales Gas gilt der Gleichverteilungssatz (innere Energie verteilt auf jeden Freiheitsgrad mit je $ {\frac {1}{2}}\ k_{B}T $). Für ein ideales Gas mit drei Freiheitsgraden und $ N $ Teilchen ergibt sich:

$ U={\frac {3}{2}}\ Nk_{B}T $ oder für $ n $ Mol eines idealen Gases $ U={\frac {3}{2}}\ nRT. $

$ k_{B} $ bezeichnet hier die Boltzmann-Konstante, $ R $ die ideale Gaskonstante

Übereinkunft:

Wird von einem System die Wärmemenge $ Q $ aufgenommen, so ist $ Q $ positiv.
Wird an einem System die Arbeit $ W $ verrichtet, so ist $ W $ positiv,

daraus folgt, dass die innere Energie $ U $ größer wird, wenn $ Q $ oder $ W $ oder beide erhöht werden und umgekehrt.

Einzelnachweise

  1.  Eintrag: internal energy. In: IUPAC Compendium of Chemical Terminology (the “Gold Book”). doi:10.1351/goldbook.I03103.
  2. Greiner, Theor. Physik Bd. 9, Gleichung 2.57

Weblinks

Wikibooks Wikibooks: Spezifische Innere Energie des Wassers – Lern- und Lehrmaterialien

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.