Innere Energie
- Seiten mit Math-Fehlern
- Seiten mit Math-Renderingfehlern
- Thermodynamische Zustandsgröße
- Chemische Größe
Die innere Energie U – auch thermodynamische Energie genannt – ist eine physikalische Größe. Ihre Änderung ΔU ist gleich der Summe der Wärme Q, die einem System zugeführt wird, und der Arbeit W, die am System verrichtet wird.[1]
- $ \mathrm {\ \Delta U=Q+W} $
Diese Gleichung besagt, dass sich die innere Energie eines Systems erhöht, wenn ihm Wärme zugeführt oder auf das System Druck ausgeübt wird, da die von außen aufgebrachte Energie im System gespeichert wird.
Definition der inneren Energie
Je mehr über den Aufbau der Materie bekannt wurde, desto mehr wurden die Ursachen für die innere Energie erkannt. Physikalisch gesprochen hat man es mit einem Vielteilchensystem zu tun, das eine abzählbare Folge von Energiewerten, $ E_{i} $, besitzt. Die innere Energie, meist als $ U $ bezeichnet, ist der thermische Mittelwert dieser Energiewerte, $ U\equiv \langle E_{i}\rangle =\sum \limits _{i}\,p_{i}\cdot E_{i} $, wobei die $ p_{i} $ Wahrscheinlichkeiten sind. Im Einzelnen unterscheidet man den physikalisch-thermischen, den chemischen und den kernphysikalischen Anteil der inneren Energie sowie die Wechselwirkungen mit äußeren Feldern.
Zusammensetzung der inneren Energie
Die Summe aus Lage-, Bewegungs- und Spannenergie ist bei reibungsfreien Vorgängen in einem abgeschlossenen System konstant.
- Der physikalisch-thermische Anteil (thermische Energie) beruht auf den gesamten ungeordneten, mikroskopischen Bewegungen der Moleküle – d. h. auf der kinetischen Energie plus Rotationsenergie plus Schwingungsenergie der Moleküle – sowie auf intermolekularen Wechselwirkungen.
- Der chemische Anteil ist die potentielle Energie der Bindungskräfte bzw. die Bindungsenergie, die in den Molekülen enthalten ist und zum Beispiel bei einer Verbrennung in Form von thermischer Energie bzw. Wärme frei wird.
- Der kernphysikalische Anteil bezeichnet die potentielle Energie, die in den Atomkernen vorhanden ist und die bei Kernzerfällen, Kernspaltungen und Kernfusionen freigesetzt werden kann.
- Zudem können noch die Wechselwirkungen von magnetischen und elektrischen Elementardipolen und induzierter Polarisation mit elektrischen und magnetischen äußeren Feldern einen Beitrag leisten.
Änderung der inneren Energie in thermodynamischen Prozessen
Der Erste Hauptsatz der Thermodynamik beschreibt eine Änderung der inneren Energie als Summe der Wärmezufuhren und -entzüge sowie der verrichteten Arbeit am entsprechenden (geschlossenen) System:
- $ \qquad \mathrm {d} U=\delta Q+\delta W=TdS-pdV. $
Hier schreibt man auf der rechten Seite jeweils $ \delta $ statt $ \mathrm {d} $, weil es sich nicht wie bei $ {\rm {d}}U $ um totale Differentiale handelt, da Q und W Prozessgrößen sind, U dagegen eine Zustandsgröße ist.
Folglich
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \qquad \mathrm \Delta U= Q + W=\int{TdS}-\int{pdV}
und bei stationären Kreisprozessen mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \qquad \mathrm \Delta U= 0
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 0= Q_1-\left|Q_2\right| + W_1-\left|W_2\right|\,,
wobei die mit 1 indizierten Energien zugeführt werden (positiv) und die mit 2 indizierten abgeführt (negativ). (vergl. Energiebilanz für Kreisprozesse).
Bei variabler Stoffmenge hat man das totale Differential
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \qquad \mathrm dU= T \mathrm dS - p \mathrm dV+\mu \mathrm dN\,,
mit der absoluten Temperatur T, der Entropie S, dem Druck p und dem chemischen Potential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu . Also: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \oint\limits_W{\rm d}U=0 auf jedem geschlossenen Weg Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W , wie immer man die Differentiale $ \mathrm {d} S $, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm dV und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm dN wählt.
Bisher wurde eine einzige Stoffsorte vorausgesetzt (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K=1 ). Hat man es mit mehreren Stoffsorten zu tun, verallgemeinert sich die differentielle Aussage wie folgt:
Innere Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U und ihre natürlichen Variablen, Entropie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S , Volumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V und Stoffmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N , sind allesamt extensive Zustandsgrößen. Die innere Energie ändert sich bei einer Skalierung des thermodynamischen Systems proportional zur entsprechenden Zustandsgröße (S,V). Der Proportionalitätsfaktor ist $ \alpha $. Daraus folgt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U(\alpha \cdot S,\alpha \cdot V, \alpha \cdot (N_1,..., N_K)) = \alpha \cdot U(S,V,N_1,..., N_K)
mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N_i (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {i=1,..., K} ) : Stoffmenge der Teilchen vom Typ Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): i . Eine solche Funktion wird homogene Funktion ersten Grades genannt.
Mit dem Euler-Theorem und dem ersten Hauptsatz folgt die Euler-Gleichung für die innere Energie:[2]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U = TS - pV + {\sum_{i=1}^{K}}\, \mu_i N_i.
In der Chemie für ein ideales Gas gilt der Gleichverteilungssatz (innere Energie verteilt auf jeden Freiheitsgrad mit je $ {\frac {1}{2}}\ k_{B}T $). Für ein ideales Gas mit drei Freiheitsgraden und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N Teilchen ergibt sich:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U=\frac{3}{2}\ N k_B T oder für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n Mol eines idealen Gases Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U=\frac{3}{2}\ n R T.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_B bezeichnet hier die Boltzmann-Konstante, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R die ideale Gaskonstante
Übereinkunft:
- Wird von einem System die Wärmemenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q aufgenommen, so ist $ Q $ positiv.
- Wird an einem System die Arbeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W verrichtet, so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W positiv,
daraus folgt, dass die innere Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U größer wird, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W oder beide erhöht werden und umgekehrt.
Einzelnachweise
- ↑ Eintrag: internal energy. In: IUPAC Compendium of Chemical Terminology (the “Gold Book”). doi:10.1351/goldbook.I03103.
- ↑ Greiner, Theor. Physik Bd. 9, Gleichung 2.57