Zustand (Thermodynamik)

Erweiterte Suche

Der Zustand eines Systems in der Thermodynamik wird durch die Angabe aller für die Abgrenzung zu anderen Zuständen notwendigen Zustandsgrößen charakterisiert.

Zustandsgrößen sind unter anderem Druck, Volumen, Temperatur, Stoffmenge. Diese Größen werden nach extensiv (mengenabhängig) und intensiv (nicht mengenabhängig) unterschieden.

Die einzelnen Zustände werden häufig in ein Phasendiagramm eingetragen. Dabei entspricht (je nach Auftragung) meist ein einzelner Punkt einem Zustand im Zustandsraum, manchmal gehören jedoch auch alle Punkte einer Phasenlinie oder Fläche zu einem einzigen Zustand.

In der statistischen Mechanik gibt es eine Unterscheidung zwischen Mikrozustand und Makrozustand. Beim Mikrozustand werden die Orte und Impulse aller Teilchen angegeben, der Mikrozustand entspricht also einem Punkt im Phasenraum. Der Makrozustand hat dann die gleiche Bedeutung wie oben für Zustand beschrieben, es ist also eine Angabe über Mittelwerte wie Temperatur, Druck und Dichte. Zu einem Makrozustand gehören alle die Mikrozustände, die mit den angegebenen Zustandsgrößen verträglich sind.

Beispiel mit Münzen
KZKKZZKK ist ein spezieller Mikrozustand, 5x K und 3x Z ist dann der Makrozustand. Es gibt $ {8 \choose 3}=56 $ Mikrozustände, die zu diesem Makrozustand gehören. Die Zahl ergibt sich dabei aus der Kombinatorik als Permutation von Objekten zweier Klassen (Z,K) unter Beachtung der Reihenfolge.

Siehe auch

Die cosmos-indirekt.de:News der letzten Tage

25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.
18.11.2022
Schwarze Löcher | Relativitätstheorie
Rekonstruktion eines ungewöhnlichen Gravitationswellensignals
Ein Forschungsteam aus Jena und Turin (Italien) hat die Entstehung eines ungewöhnlichen Gravitationswellensignals rekonstruiert.
18.11.2022
Thermodynamik | Festkörperphysik
Bläschenbildung: Siedeprozess deutlich genauer als bisher beschrieben
Siedet eine Flüssigkeit in einem Gefäß, bilden sich am Boden winzige Dampfbläschen, die aufsteigen und Wärme mit sich nehmen.
15.11.2022
Sterne | Planeten | Atomphysik | Quantenphysik
Neues vom Wasserstoff: Erkenntnisse über Planeten und Sterne
Mit einer auf Zufallszahlen basierenden Simulationsmethode konnten Wissenschaftler die Eigenschaften von warmem dichten Wasserstoff so genau wie nie zuvor beschreiben.