Gel-Permeations-Chromatographie

Gel-Permeations-Chromatographie

Die Gel-Permeations-Chromatographie (GPC) ist eine Art der Flüssigchromatographie, bei der Moleküle gelöster Stoffe aufgrund ihrer Größe (genauer: ihrem hydrodynamischen Volumen) getrennt werden können. Andere Bezeichnungen sind Größenausschluss-Chromatographie, Size Exclusion Chromatography (SEC) und, physikalisch gesehen falsch, auch Gelfiltrations-Chromatographie (GFC) oder Molekularsieb-Chromatographie. Der Trennungseffekt beruht jedoch nicht auf einem Filtrationprozess, sondern auf unterschiedlichen Diffusionsvolumina für unterschiedlich große Moleküle. Die porösen Polymere der stationären Phase erlauben kleineren Molekülen einzudringen, wodurch sich das ihnen zur Verfügung stehende Diffusionsvolumen vergrößert und sich somit die Retentionszeit verlängert. Kleine Moleküle werden demnach stärker zurückgehalten als große, denen nur Zwischenräume zwischen dem Polymergranulat zugänglich sind und die daher schneller durch die Säule fließen. Daher sind große Moleküle in den früheren Fraktionen des Eluats, während kleinere Moleküle später eluieren. Als stationäre Phase verwendet man in der Regel poröse Polymere in granulärer Form. Typische Anwendungen sind jegliche Art von Makromolekülen wie die Polymerfraktionierung synthetischer Polymere, Biopolymere (z. B. Polysaccharide, DNA, RNA und Proteine). Die GPC ermittelt die Verteilungskurve der Molmasse, womit anschließend die mittleren Molmassen (Mn, Mw, Mz) und die Polydispersität der Probe berechnet werden können.

Aufbau eines GPC-Automaten

Aufbau eines GPC-Automaten

Die wesentlichen Bestandteile eines automatisierten GPC-Systems sind Pumpe, Injektionssystem, Trennsäulen und verschiedene Detektoren. Die Pumpe saugt das Laufmittel an und erzeugt einen konstanten Fluss durch das gesamte System. Häufig wird das Laufmittel durch einen Durchlaufentgaser (Inline-Degasser) gesaugt, der gelöste Gase entfernt. Nach der Pumpe steht das Injektionssystem für den Probenauftrag, entweder manuell oder ein Autosampler. In der darauf folgenden Trennsäule wird die Probe anhand ihres hydrodynamischen Radius aufgetrennt. Die verschiedenen Detektoren liefern dann je nach Art bestimmte Aussagen. Letztendlich landet der gesamte Fluss (inklusive Probe) in einem Abfallgefäß. Der Fluss (das Eluat) kann aber auch in einzelne Gefäße aufgefangen werden, man spricht dann von Fraktionierung (präparative GPC). Als effektive Methode zur weiteren Aufreinigung von bestimmten GPC-Fraktionen, die z. B. biologisch aktive Metalloproteine enthalten, bietet sich für diese Zwecke die quantitative präparative native kontinuierliche Polyacrylamid-Gelelektrophorese (QPNC-PAGE) an.

Trennprinzip

Trennung in der GPC-Säule
Elutionsprofil einer Sephadex-G-50-Säule

Die Trennsäulen sind mit pulverförmigen Partikeln eines hydrophilen, porösen und quervernetzten Materials gefüllt, z. B. Sephadex (ein mit Epichlorhydrin quervernetztes Dextran) oder Sepharose (eine quervernetzte Agarose) oder Kieselgel und andere Silikate.[1][2][3][4] Der Durchmesser der Partikel liegt im Bereich von circa 3–35 µm. Die Partikel dieses undurchsichtigen Gels besitzen eine hochporöse Oberfläche und je nach zu trennenden Molekülgrößen variierende Porengrößen von ca. 60–2000 Å; (6–200 nm). Eluiert wird nun eine Probe mit Molekülen verschiedener Größe. Jeweils sehr große und sehr kleine Moleküle können nicht getrennt werden. Alle Moleküle, die nicht in die Poren passen, eluieren ganz am Anfang, und Moleküle, die sehr gut in alle Poren passen, ganz am Ende.

Trennsäulen

GPC Säule

Generell unterscheidet man zwei Typen von Säulen: die sogenannten Single-Porosity-Säulen und die Linear-Säulen, welche auch Mixed-Bed-Säulen genannt werden. Die Single-Porosity-Säulen haben Poren mit einer sehr geringen Porengrößenverteilung. Sie trennen sehr gut in einem bestimmten Größenbereich. Um eine Trennung über einen größeren Molmassenbereich zu erzielen, werden hier häufig drei bis vier Trennsäulen mit verschiedenen Porengrößen hintereinander geschaltet. In den Mixed-Bed-Säulen wurde das Säulenmaterial bereits vom Hersteller so abgemischt, dass von sehr kleinen bis großen Poren alle Porengrößen vertreten sind. Diese Säulen trennen über einen großen Molmassenbereich und sehr linear mit dem hydrodynamischen Volumen. Die Trennleistung einer Mixed-Bed-Säule ist daher begrenzt, so dass auch hier für eine gute Auftrennung zwei bis drei Trennsäulen in Serie kombiniert werden. Heutzutage dominieren die Mixed-Bed-Säulen. Die Single-Porosity-Säulen haben aber durchaus ihre Berechtigung für spezielle Anwendungen.

Detektoren

Die verschiedenen Detektionsvarianten (Brechungsindex, Licht im UV/VIS-Bereich, Viskosität, Lichtstreuung, elektrische Leitfähigkeit, Radioaktivität, ...) müssen auf den jeweiligen Polymertyp sorgfältig kalibriert werden. Als Detektoren finden sogenannte Konzentrationsdetektoren wie Brechungsindexdetektoren (RI-Detektor von engl. refractive index) und UV-Detektoren (je nach UV-Aktivität des zu analysierenden Polymers) Verwendung. Bei diesen Detektoren steigt die Peakfläche proportional mit der Konzentration, was eine Quantifizierung einer Substanz ermöglicht. Bei der klassischen GPC wird allein dieser Detektortyp verwendet und die Anlage wird zur Ermittlung der Molekülmassen mit Standardsubstanzen kalibriert.

Unter dem Synonym der molmassensensitiven Detektoren finden weiterhin Viskositätsdetektoren und Lichtstreuungdetektoren Verwendung. Dieser Detektortyp ist nur in Kombination mit Konzentrationsdetektoren verwendbar, weil zur Molmassenberechnung in jedem Fall die Konzentration benötigt wird. Insbesondere die Lichtstreuung kann unabhängig von Polymerstandards die Molekularmassenmittelwerte (Mn, Mw, Mz) und den Gyrationsradius direkt bestimmen. Hierbei unterscheidet man vor allen Dingen Mehrwinkel- (MALS), Kleinwinkel- (LALS) und Rechtwinkel-Lichtstreudetektoren (RALS). Mit dem Viskositätsdetektor können die Parameter K und α der Mark-Houwink-Gleichung, eine universelle Kalibrierung und Aussagen über die Konformation des Polymers gemacht werden.

Zusätzlich finden auch Infrarot-Detektoren und Fluoreszenzdetektoren Anwendung, beschränken sich aber auf spezielle Applikationen.

Konventionelle Kalibrierung

Konventionelle Kalibrierung mit drei Pullulan-Standards unterschiedlicher Größe

Die konventionelle Kalibrierung findet nur beim Einsatz eines Konzentrationsdetektors (RI oder UV) Verwendung. Zur Kalibrierung werden meist mehrere unterschiedlich große Polymerstandards mit niedrigen Polydispersitäten eingesetzt. Aus den angegebenen Molekülmassen der Standards und der nach Analyse erhaltenen Retentionszeit kann man die Kalibrierkurve erstellen. Mit Hilfe der Kalibrierkurve können nun die Molekülmassen unbekannter Proben bestimmt werden. Als Ergebnis erhält man relative Molmassen, bezogen auf die Standardsubstanz. Da nicht für jedes Polymer engverteilte Standards verfügbar sind, kann die Molmassenberechnung bei Verwendung unterschiedlicher Standards problematisch sein. Obwohl man in solchen Fällen möglichst „ähnliche“ Standards verwendet, kann die Molmassenberechnung dramatisch von der realen abweichen. Eine wesentlich sicherere Methode wäre hier der Einsatz einer direkten Methode wie z. B. der Lichtstreuung.

Universelle Kalibrierung

GPC unter Verwendung eines Konzentrationsdetektors (RI oder UV) in Verbindung mit einem Viskositätsdetekor. Zur Kalibrierung werden Polymerstandards mit niedrigen Polydispersitäten eingesetzt und eine Kalibrierkurve Log (Molmasse × Intrinsische Viskosität) aufgestellt. Da das Produkt von (Molmasse × Intrinsische Viskosität) proportional zum hydrodynamischen Radius ist, lassen sich so die realen bzw. absoluten Molmassen berechnen.

Lichtstreudetektion

Durch Einsatz eines Lichtstreudetektors entfällt das Aufstellen einer Kalibrierkurve. Ein Lichtstreudetektor misst indirekt die absolute Molekülmasse. Zur Auswertung ist zusätzlich ein Konzentrationsdetektor notwendig. Die von John William Strutt, 3. Baron Rayleigh aufgestellte Gleichung beschreibt den Zusammenhang zwischen der gestreuten Lichtintensität, die durch das sogenannte Rayleigh-Verhältnis R(θ) ausgedrückt wird, der Polymerkonzentration c und der gewichtsgemittelten Molmasse Mw. Dabei ist K eine optische Konstante und A2 der zweite Virialkoeffizient.

$ {\frac {Kc}{R(\Theta )}}={\frac {1}{M_{w}P(\Theta )}}+2A_{2}c $

Literatur

  • Friedrich Lottspeich, Haralabos Zorbas: Bioanalytik. Spektrum Akademischer Verlag, Heidelberg 1998, ISBN 978-3827400413.
  • Hubert Rehm, Thomas Letzel: Der Experimentator: Proteinbiochemie / Proteomics. 6. Auflage, Spektrum Akademischer Verlag, Heidelberg 2009, ISBN 978-3827423122.

Weblinks

Einzelnachweise

  1. J. Porath, P. Flodin: Gel filtration: a method for desalting and group separation. In: Nature (1959), Bd. 183(4676), S. 1657-9. PMID 13666849.
  2. J. Porath: Gel filtration of proteins, peptides and amino acids. In: Biochim Biophys Acta (1960), Bd. 39, S. 193-207. PMID 14434211.
  3. P. Andrews: Estimation of the molecular weights of proteins by Sephadex gel-filtration. In: Biochem J. (1964), Bd. 91(2), S. 222-33. PMID 4158310; PMCID PMC1202876.
  4. J. Porath: From gel filtration to adsorptive size exclusion. In: J Protein Chem. (1997), Bd. 16(5), S. 463-8. PMID 9246630.