Strukturformel
Agarose polymere.svg
Allgemeines
Name Agarose
Andere Namen

(1→4)-3,6-Anhydro-α-L-galactopyranosyl- (1→4)-β-D-galactopyranan

CAS-Nummer 9012-36-6
PubChem

11966311

Art des Polymers Biopolymer
Kurzbeschreibung weißer bis gelblicher geruchloser Feststoff
Monomer
Monomer D-Galactose und 3,6-Anhydro-L-galactose
Summenformel C12H18O9
Molare Masse 306,46 g·mol−1
Eigenschaften
Aggregatzustand fest
Dichte ≈0,9 g/cm3[1]
Schmelzpunkt 88 °C[2]
Löslichkeit

leicht löslich in Wasser (beim Erhitzen)[3]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [3]
keine GHS-Piktogramme
H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze
EU-Gefahrstoffkennzeichnung [3]
keine Gefahrensymbole
R- und S-Sätze R: keine R-Sätze
S: keine S-Sätze
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Agarose ist ein Polysaccharid aus D-Galactose und 3,6-Anhydro-L-galactose, die glycosidisch miteinander verbunden sind. Es stellt die Hauptkomponente des Agars dar und wird vor allem aus den Rotalgengattungen Gelidium und Gracillaria gewonnen. Agarose ist ein starker Gelbildner und für die Gelierfähigkeit des Agars verantwortlich.

Agarosegel ist die Bezeichnung für ein Gel, das in der Agarose-Gelelektrophorese zur elektropherographischen Trennung von Substanzen, z. B. von Nukleinsäuren oder Proteinen eingesetzt wird. Es wird durch Aufkochen von Agarose in einem Puffer, beispielsweise TBE-Puffer, hergestellt. Die Konzentration der Agarose im Puffer richtet sich nach der Größe der mit der Gelelektrophorese aufzutrennenden Teilchen, wobei für kleinere Partikel eine bessere Trennung (räumliche Auflösung) mit einem höherprozentig angesetzten Agarosegel erzielt werden kann, für größere mit einem niederprozentigen Gel. Für die Agarosegel-Elektrophorese von Plasmiden und deren Restriktionsfragmente verwendet man beispielsweise meist eine Konzentration von 0,7 bis 1,2 % Agarose im Gelpuffer.

Agarose-Konzentration Auftrennungsbereich in bp
0,5 1000-30000
0,7 800-12000
1,0 500-10000
1,2 400-7000
1,4 200-4000
2,0 50-2000

Für die Auftrennung von RNA müssen spezielle Formaldehyd-haltige Gele verwendet werden. Häufig werden den Gelen bereits bei der Herstellung Hilfsstoffe zur Sichtbarmachung der aufgetrennten Moleküle zugesetzt. Im Falle von DNA handelt es sich dabei meist um Ethidiumbromid.

Quervernetzte Agarose wird unter dem Handelsnamen Sepharose verkauft, der für Separation-Pharmacia-Agarose steht. Sepharose wird als stationäre Phase für die chromatographische Trennung von Biomolekülen eingesetzt. Mit Protein A bzw. Protein G beschichtete Sepharose-Kügelchen (sogenannte Beads) werden bei der Immunpräzipitation eingesetzt.

Einzelnachweise

  1. Datenblatt bei Baker (englisch)
  2. Datenblatt bei AppliChem
  3. 3,0 3,1 3,2 Datenblatt Agarose bei Carl Roth, abgerufen am 14. Dezember 2010.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?