Restriktionsenzym

Erweiterte Suche

Restriktionsenzym

Bezeichner
Gen-Name(n) T2; R.
Enzymklassifikation
EC, Kategorie 3.1.21.4  Endonuklease
Reaktionsart Hydrolyse
Substrat DNA
Produkte zwei DNA-Teilstücke
Vorkommen
Übergeordnetes Taxon Bakterien

Restriktionsenzyme, genauer auch Restriktionsendonukleasen (REN), sind Enzyme, die DNA an bestimmten Positionen erkennen und schneiden können. Restriktionsendonukleasen treten unter anderem in Bakterien und Archaeen auf[1] und dienen dort der Phagenabwehr. Die Restriktionsenzyme erkennen fremde DNA am fehlenden Methylierungsmuster oder an einer sonst nicht vorkommenden DNA-Sequenz und hydrolysieren dann die Fremd-DNA. Sie treten daher im Bakterium immer zusammen mit typischen DNA-Methyltransferasen auf, die der bakterieneigenen DNA kennzeichnende Muster aufprägen.

Eigenschaften

Damit ein Bakterium über Restriktionsenzyme als Abwehrsystem verfügen kann, sind mindestens drei funktionell unterscheidbare Proteinbereiche notwendig: Restriktions-, Methylierungs- und Sequenzerkennungsdomäne. Diese drei Domänen können sich entweder auf nur einem Protein befinden oder auf mehrere verteilt sein.[2]

Jede Restriktionsendonuklease erkennt eine bestimmte DNA-Basensequenz. Die Spezifität ist unter anderem vom verwendeten Puffer und den Cofaktoren abhängig. Bei falschen Umgebungsbedingungen kann auch unspezifisch restringiert werden, was als Star-Aktivität bezeichnet wird. Die Spezifität von Restriktionsendonukleasen kann durch ein Proteindesign gezielt an eine gewünschte DNA-Sequenz angepasst werden, z. B. bei Zinkfingernukleasen.

Die Positionen der Schnittstellen einzelner Restriktionsenzyme lassen sich in Restriktionskarten einer DNA darstellen. Solche Karten gibt es beispielsweise für Genome und Plasmide. Über die Länge der DNA-Fragmente, die beim Schneiden der DNA durch Restriktionsenzyme entstehen, können DNA-Abschnitte im Vergleich mit einer Restriktionskarte identifiziert werden.

Klassifizierung

In biotechnologischen Verfahren der Molekularbiologie werden die Restriktionsenzyme verwendet, um DNA-Moleküle an definierten Stellen zu zerlegen. Daher werden diese Enzyme auch als molekulare Scheren bezeichnet. Um die Schnittenden wieder kovalent zusammenzufügen, wird (bei sticky ends erst nach einer Hybridisierung) eine Ligase benutzt.

Nach ihren Eigenschaften unterscheidet man vier Haupttypen, die sich noch weiter in mehrere Subtypen aufspalten:[3]

  • Typ I schneidet die DNA an einer zufälligen Stelle weit von der Erkennungssequenz entfernt. Benötigt ATP und transferiert eine Methylgruppe von S-Adenosyl-Methionin.
  • Typ II schneidet die DNA innerhalb oder in unmittelbarer Nähe der Erkennungssequenz. Benötigt kein ATP und hat keine Methyltransferase-Aktivität.
  • Typ III schneidet die DNA etwa 20 bis 25 Basenpaare von der Erkennungssequenz entfernt. Benötigt ATP und transferiert eine Methylgruppe von S-Adenosyl-Methionin.
  • Typ IV schneidet nur methylierte/ hydroxymethylierte/ glucosyl-hydroxymethylierte DNA - im Gegensatz zu den Typen I-III, die durch Methylierungsmuster gehemmt werden.[4] [5]

Im allgemeinen Sprachgebrauch wird der Begriff Restriktionsenzym meist mit den Restriktionsendonukleasen vom Typ II gleichgesetzt, da die Enzyme der Typen I und III in der Molekularbiologie nur eine geringe Bedeutung besitzen. Die Namen der Restriktionsenzyme geben ihre Herkunft an. Der erste Buchstabe steht für die Gattung, der zweite und dritte für die Art, erweitert wird es durch Namenszusätze und die chronologische Abfolge der Entdeckung. Das Enzym EcoRI ist beispielsweise das erste Enzym, das in dem Stamm Escherichia coli R(rough) gefunden wurde und SmaI das erste Enzym aus Serratia marcescens. Restriktionsenzyme unterschiedlicher Herkunft mit identischer Erkennungssequenz und gleichem Schnittmuster werden Isoschizomere genannt. Schneiden sie innerhalb derselben Sequenz, hinterlassen aber unterschiedliche Schnittenden, bezeichnet man sie als Neoschizomere.

Die Erkennungssequenzen der Restriktionsendonukleasen vom Typ II bestehen meist aus palindromischen Sequenzen von vier, sechs oder acht Basenpaaren. Der Schnitt kann gerade sein (engl. blunt ends, deut. stumpfe Enden oder glatte Enden, z. B. SmaI). Die Erkennungssequenz von SmaI lautet: 5'-CCCGGG-3'. Der Schnitt erfolgt zwischen dem C und dem G:

Erkennungssequenz der Restriktionsendonuklease SmaI

Der Schnitt kann auch versetzt sein (englisch sticky ends, deutsch klebrige Enden, z. B. EcoRI). Die Erkennungssequenz von EcoRI lautet: 5'-GAATTC-3'. Der Schnitt erfolgt zwischen dem G und dem A:

Erkennungssequenz der Restriktionsendonuklease EcoRI

Klebrige Enden sind leichter ligierbar, da sie miteinander hybridisieren können und sich daher häufiger zusammenfinden.

Beispiele

Ausgewählte Beispiele für Restriktionsendonukleasen vom Typ II Subtyp P
Enzym Quelle Erkennungssequenz Schnitt Enden
EcoRI Escherichia coli
5'-GAATTC-3'
3'-CTTAAG-5'
5'-G     AATTC-3'
3'-CTTAA     G-5'
5'–Überhang mit vier Basen
(klebrige Enden)
BamHI Bacillus amyloliquefaciens
5'GGATCC
3'CCTAGG
5'---G     GATCC---3'
3'---CCTAG     G---5'
5'–Überhang mit vier Basen
(klebrige Enden)
HindIII Haemophilus influenzae
5'AAGCTT
3'TTCGAA
5'---A     AGCTT---3'
3'---TTCGA     A---5'
5'–Überhang mit vier Basen
(klebrige Enden)
HaeIII Haemophilus aegyptius
5'GGCC
3'CCGG
5'---GG  CC---3'
3'---CC  GG---5'
kein Überhang
(glatte Enden)
NdeI Neisseria denitrificans
5'-CATATG-3'
3'-GTATAC-5'
5'-CA     TATG-3'
3'-GTAT     AC-5'
5'–Überhang mit zwei Basen
(klebrige Enden)
SmaI Serratia marcescens
5'-CCCGGG-3'
3'-GGGCCC-5'
5'-CCC     GGG-3'
3'-GGG     CCC-5'
kein Überhang
(glatte Enden)
PvuI Proteus vulgaris
5'-CGATCG-3'
3'-GCTAGC-5'
5'-CGAT     CG-3'
3'-GC     TAGC-5'
3'–Überhang mit zwei Basen
(klebrige Enden)
SphI Streptomyces phaeochromogenes
5'-GCATGC-3'
3'-CGTACG-5'
5'-GCATG     C-3'
3'-C     GTACG-5'
3'–Überhang mit vier Basen
(klebrige Enden)

Geschichte

Mit der Entdeckung der Restriktionsenzyme begann die Entwicklung der Molekularbiologie. Sie ermöglichen die gezielte Herstellung von DNA-Fragmenten, die dann isoliert und zu neuen Konstruktionen zusammengesetzt werden können. Enzyme, die klebrige Enden erzeugen, sind dabei besonders hilfreich, da sich die überlappenden Enden leicht miteinander verbinden lassen. Für ihre grundlegenden Arbeiten zur „Entdeckung der Restriktionsenzyme und ihre Anwendung in der Molekulargenetik“ bekamen Werner Arber, Daniel Nathans und Hamilton Othanel Smith 1978 den Nobelpreis für Physiologie oder Medizin.[6]

Der Name Restriktionsenzym stammt von dem bakteriellen Restriktions-Modifikationssystem, das der Abwehr fremder (viraler) DNA dient. Viele Bakterien besitzen stammspezifische Restriktionsendonukleasen. In der eigenen DNA sind die entsprechenden Erkennungssequenzen modifiziert (methyliert) und werden daher nicht geschnitten. Wenn Viren, die sich in den Bakterien vermehren (Bakteriophagen), ihre DNA in die Zellen injizieren, ist diese nicht methyliert und wird abgebaut. Nur Viren, die aus Bakterien desselben Stammes kommen, besitzen das richtige Methylierungsmuster und können sich weiter vermehren. Die Vermehrung der Viren ist damit auf diesen Stamm eingeschränkt oder restringiert. (Restriktion = Beschränkung).

Einzelnachweise

  1. Applied Microbial Systematics, F. G. Priest, Michael Goodfellow, ISBN 0-7923-6518-6, eingeschränkte Vorschau in der Google Buchsuche
  2. Cornel Mülhardt: Der Experimentator: Molekularbiologie/Genomics, Springer 2008, ISBN 3-8274-2036-9, Seite 48 (Vorschau bei Google Books).
  3. Roberts, R.J. et al. (2003): A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. In: Nucleic Acids Res. Bd. 31, S. 1805–1812. PMID 12654995
  4. Cornel Mülhardt: Allgemeine Mikrobiologie, Georg Fuchs, Hans G. Schlegel, Georg Thieme Verlag, 2006,ISBN 3-13-444608-1, Seite 468 eingeschränkte Vorschau in der Google Buchsuche.
  5. Cornel Mülhardt: Der Experimentator: Molekularbiologie/Genomics, Springer 2008, ISBN 3-8274-2036-9, Seite 48 (Vorschau bei Google Books).
  6. Informationen der Nobelstiftung zur Preisverleihung 1978 an Werner Arber, Daniel Nathans und Hamilton O. Smith (englisch)

Weblinks

  • REBASE – umfassendste Datenbank aller bekannten Restriktionsenzyme, einschließlich Verfügbarkeit durch alle kommerziellen Hersteller (englisch)
  • NEBCutter – Web-basiertes Programm zum Schneiden von DNA mit sämtlichen verfügbaren Restriktionsenzymen; beachtet Methylierungssensitivitäten; Simulation von Gelen (englisch)
  • WatCut – Web-basiertes Programm zum Schneiden von DNA mit Restriktionsenzymen (englisch)
  • NEB – Seite des weltweit größten kommerziellen Angebots an Restriktionsenzymen mit ausführlichen Informationen zu allen Enzymen (englisch)
  • Fermentas – Seite eines kommerziellen Anbieters von Restriktionsenzymen mit detaillierten Angaben zu vielen Enzymen (englisch)

Die cosmos-indirekt.de:News der letzten Tage

21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.
18.11.2022
Schwarze Löcher | Relativitätstheorie
Rekonstruktion eines ungewöhnlichen Gravitationswellensignals
Ein Forschungsteam aus Jena und Turin (Italien) hat die Entstehung eines ungewöhnlichen Gravitationswellensignals rekonstruiert.
18.11.2022
Thermodynamik | Festkörperphysik
Bläschenbildung: Siedeprozess deutlich genauer als bisher beschrieben
Siedet eine Flüssigkeit in einem Gefäß, bilden sich am Boden winzige Dampfbläschen, die aufsteigen und Wärme mit sich nehmen.
15.11.2022
Sterne | Planeten | Atomphysik | Quantenphysik
Neues vom Wasserstoff: Erkenntnisse über Planeten und Sterne
Mit einer auf Zufallszahlen basierenden Simulationsmethode konnten Wissenschaftler die Eigenschaften von warmem dichten Wasserstoff so genau wie nie zuvor beschreiben.
15.11.2022
Sterne | Kernphysik
Kosmische Schokopralinen: Innerer Aufbau von Neutronensternen enthüllt
Mit Hilfe einer riesigen Anzahl von numerischen Modellrechnungen ist es Physikern gelungen, allgemeine Erkenntnisse über die extrem dichte innere Struktur von Neutronensternen zu erlangen.
15.11.2022
Thermodynamik
Neue Aspekte der Oberflächenbenetzung
Wenn eine Oberfläche nass wird, spielt dabei auch die Zusammensetzung der Flüssigkeit eine Rolle.