Molmassenverteilung
- Seiten mit Math-Fehlern
- Seiten mit Math-Renderingfehlern
- Seiten mit defekten Dateilinks
- Makromolekulare Chemie
- Chemische Größe
Die Molmassenverteilung bezeichnet für einen bestimmten Stoff die Verteilung, sprich die anteilsmäßige Aufteilung der molaren Masse der enthaltenen Moleküle. Der Begriff wird sinnvollerweise nur bei Polymeren angewandt, da deren Polymerisationsgrade (und somit auch deren Molmassen) über einen mehr oder weniger breiten Bereich verteilt sind. Bei bestimmten Biopolymeren gibt es nur eine definierte molare Masse. Weitverbreitet ist auch die Bezeichnung Molekulargewichtsverteilung, diese ist aber nicht korrekt (siehe Anmerkung hier).
Verteilungsfunktionen
Entsprechend den Verteilungsfunktionen aus der Mathematik bzw. den physikalisch-chemischen Gegebenheiten bei der Herstellung des Polymers ergeben sich verschiedene mögliche Verteilungsfunktionen:
- Gauss-Verteilung
- Schulz-Zimm-Verteilung
- Poisson-Verteilung
In der Praxis können natürlich auch von diesen theoretischen Modellen abweichende Verteilungen auftauchen. Oft findet man die Bezeichnungen:
- enge Molmassenverteilung
- geringe Anzahl von Fraktionen und hohe Anzahl der Moleküle pro Fraktion bzw. relativ wenige und geringe Abweichungen vom Mittelwert, d.h. hohe Einheitlichkeit (meist wünschenswert);
- breite Molmassenverteilung
- viele Fraktionen und kleine Anzahl der Moleküle pro Fraktion oder unregelmäßige Verteilung der Moleküle pro Fraktion bzw. relativ viele und hohe Abweichungen vom Mittelwert, d.h. hohe Uneinheitlichkeit (meist unerwünscht).
Molmasse von Polymeren
Es werden verschiedene Mittelwerte definiert, um die Probe statistisch zu beschreiben:
- Zahlenmittel der Molmasse
Die Molmasse
=
- Massenmittel der Molmasse
Die Molmasse
= Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\sum_{i=1}^\infty n_{i} \cdot M_{i}^2 }{\sum_{i=1}^\infty n_{i} \cdot M_{i}} = \frac{\sum_{i=1}^\infty x_{i} \cdot M_{i}^2 }{\sum_{i=1}^\infty x_{i} \cdot M_{i}} = \sum_{i=1}^\infty w_{i} \cdot M_{i}
- Zentrifugenmittel der Molmasse (Z-Mittel)
- Viskositätmittel der Molmasse
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_{\mathrm {Mono}} : Molare Masse des Monomers
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_i : Molare Masse der Polymere der jeweiligen Fraktion i
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_i : Gesamtmasse der jeweiligen Fraktion i
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N_i : Anzahl der Makromoleküle in der Fraktion i
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f : Gesamtanzahl aller Fraktionen
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_{i}
[
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_{i}
= Molenbruch des i-mers
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_{i}
= Molmasse des i-mers,
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): w_{i} = \frac{m_{i}}{\sum_{i=1}^\infty m_{i}} = x_{i} \cdot \frac{M_{i}}{\bar M_n} = i \cdot x_{i} \cdot \frac{n}{n_0}
Bestimmungsmethoden
Folgende Analysenmethoden haben sich zur Bestimmung der Molmassenverteilung bewährt:
- Gelpermeations-Chromatografie (GPC)
- Sedimentationsanalyse zur Bestimmung des Zentrifugenmittels
- Massenspektrometrie (MALDI-TOF)
- Viskosimetrie, d. h. rheologisches Verhalten in Lösung
- Rheologie
- Lichtstreuung
- Dampfdruckosmometrie bei sehr geringen Molmassen (bis ca. 50.000 g/mol)[1]
- Osmometrie bei geringen Molmassen (bis ca. 10.000 g/mol)
Die GPC und die Zentrifugation werden auch zur präparativen Polymerfraktionierung eingesetzt.
Polydispersität
Physikalische, mechanische und rheologische Eigenschaften werden oft durch die Polymolekularität (das Verhältnis von Gewichtsmittel zu Zahlenmittel) bestimmt.
Dieses Verhältnis wird auch Polydispersität Q genannt und ist ein Maß für die Breite einer Molmassenverteilung (MMV). Je größer Q, desto breiter ist die MMV.
Im Fall, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q = 1
ist, gilt:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \overline {M}_n = \overline {M}_w = \overline {M}_z
Zutreffen wird dieses, wenn die Makromoleküle biologischen Ursprungs sind, z.B. Proteine, Polysaccharide, DNA, die alle die gleiche Molmasse haben.
Für synthetische Polymere hingegen gilt:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \overline {M}_n < \overline {M}_{ \eta } < \overline {M}_w < \overline {M}_z
Das Verhältnis aus Zahlenmittel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \overline {M}_n
und der mittleren Molmasse einer monomeren Einheit
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_{n} = \frac{\overline {M}_n}{M_0}
Mittlerer Polymerisationsgrad
Allgemein erhält man den mittleren Polymerisationsgrad durch Division der mittleren molaren Masse durch die molare Masse des Monomeren.
Bei nicht radikalischer Polymerisation muss beachtet werden, ob und welche Gruppen bei der Bindung eines Monomeren abgespalten werden, und dies muss in den Berechnungen berücksichtigt werden.
Ebenso gelten die folgenden Formeln nicht für Copolymerisationen.
Zahlenmittel
Gewichtsmittel
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \overline {X}_w = \frac {\sum_{i=1}^f m_i M_i } {\sum_{i=1}^f m_i } \cdot \frac {1} {M_{\mathrm {Mono}}} = \frac {\sum_{i=1}^f N_i M_i^2 } {\sum_{i=1}^f N_i M_i } \cdot \frac {1} {M_{\mathrm {Mono}}} = \frac { \overline {M}_w } {M_{\mathrm {Mono}}}
Viskositätsmittel
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \overline {X}_{ \eta } = \left( \frac{\sum_{i=1}^f N_i M_i^{(1+ \alpha)} }{\sum_{i=1}^fN_i M_i} \right)^{\frac{1}{\alpha}} \cdot \frac {1} {M_{\mathrm {Mono}}} = \frac { \overline {M}_{ \eta }} {M_{\mathrm {Mono}}}
Molekulare Uneinheitlichkeit
Die molekulare Uneinheitlichkeit U ist ein mathematisches Maß für die Uneinheitlichkeit eines Polymerisats, bzw. für die Breite der Molmassenverteilung.
Je kleiner dieser Wert ist, umso einheitlicher ist das Polymerisat, umso enger ist die Molmassenverteilung.
Einzelnachweise
- ↑ M. D. Lechner, E. H. Nordmeier und K. Gehrke: Makromolekulare Chemie. Birkhäuser, 2010, ISBN 978-3-7643-8890-4, S. 245.
Literatur
- J. M. G. Cowie: Chemie und Physik der synthetischen Polymeren; Vieweg, 2 Ed., 1991.
- K. Matyjaszewski, T.P. Davis: Handbook of Radical Polymerization; Wiley, 2002.
- Bernd Tieke (2000): Makromolekulare Chemie. Eine Einführung Wiley-VCH, Weinheim. ISBN 978-3-527-29364-3.