Molmassenverteilung

Molmassenverteilung

Die Molmassenverteilung bezeichnet für einen bestimmten Stoff die Verteilung, sprich die anteilsmäßige Aufteilung der molaren Masse der enthaltenen Moleküle. Der Begriff wird sinnvollerweise nur bei Polymeren angewandt, da deren Polymerisationsgrade (und somit auch deren Molmassen) über einen mehr oder weniger breiten Bereich verteilt sind. Bei bestimmten Biopolymeren gibt es nur eine definierte molare Masse. Weitverbreitet ist auch die Bezeichnung Molekulargewichtsverteilung, diese ist aber nicht korrekt (siehe Anmerkung hier).

Verteilungsfunktionen

Entsprechend den Verteilungsfunktionen aus der Mathematik bzw. den physikalisch-chemischen Gegebenheiten bei der Herstellung des Polymers ergeben sich verschiedene mögliche Verteilungsfunktionen:

  • Gauss-Verteilung
  • Schulz-Zimm-Verteilung
  • Poisson-Verteilung

In der Praxis können natürlich auch von diesen theoretischen Modellen abweichende Verteilungen auftauchen. Oft findet man die Bezeichnungen:

  • enge Molmassenverteilung
geringe Anzahl von Fraktionen und hohe Anzahl der Moleküle pro Fraktion bzw. relativ wenige und geringe Abweichungen vom Mittelwert, d.h. hohe Einheitlichkeit (meist wünschenswert);
  • breite Molmassenverteilung
viele Fraktionen und kleine Anzahl der Moleküle pro Fraktion oder unregelmäßige Verteilung der Moleküle pro Fraktion bzw. relativ viele und hohe Abweichungen vom Mittelwert, d.h. hohe Uneinheitlichkeit (meist unerwünscht).

Molmasse von Polymeren

Datei:Molmassenverteilung.png
Typische Molmassenverteilung eines synthetischen Polymers

Es werden verschiedene Mittelwerte definiert, um die Probe statistisch zu beschreiben:

  • Zahlenmittel der Molmasse

Die Molmasse Mi des i-mers wird mit dem relativen Zahlenanteil, den dieses Polymer hat, gewichtet. Die zahlenmittlere Molmasse sagt also aus, welche Molmasse ein zufälliges aus der Probe entnommenes Molekül im Durchschnitt hat. Dabei entspricht ni der Zahl an Makromolekülen in der Probe mit genau i Repetiereinheiten.

Mn=i=1fNiMii=1fNi = i=1niMii=1ni=i=1xiMi=mn
  • Massenmittel der Molmasse

Die Molmasse Mi des i-mers wird mit dem relativen Massenanteil, den dieses Polymer hat, gewichtet. Würde man eine zufällige Monomereinheit auswählen und die Molmasse des dazugehörigen Polymers bestimmen, erhielte man als Durchschnitt die gewichtsmittlere Molmasse.

Mw=i=1fmiMii=1fmi=i=1fNiMi2i=1fNiMi = Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\sum_{i=1}^\infty n_{i} \cdot M_{i}^2 }{\sum_{i=1}^\infty n_{i} \cdot M_{i}} = \frac{\sum_{i=1}^\infty x_{i} \cdot M_{i}^2 }{\sum_{i=1}^\infty x_{i} \cdot M_{i}} = \sum_{i=1}^\infty w_{i} \cdot M_{i}
  • Zentrifugenmittel der Molmasse (Z-Mittel)

Mz = Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\sum_{i=1}^\infty n_{i} \cdot M_{i}^3 }{\sum_{i=1}^\infty n_{i} \cdot M_{i}^2} = \frac{\sum_{i=1}^\infty x_{i} \cdot M_{i}^3 }{\sum_{i=1}^\infty x_{i} \cdot M_{i}^2} = \frac{\sum_{i=1}^\infty w_{i} \cdot M_{i}^2 }{\sum_{i=1}^\infty w_{i} \cdot M_{i}}

  • Viskositätmittel der Molmasse
Mη=(i=1fNiMi(1+α)i=1fNiMi)1α

α kann Werte zwischen 0 und 1 annehmen.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_{\mathrm {Mono}} : Molare Masse des Monomers
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_i : Molare Masse der Polymere der jeweiligen Fraktion i
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_i : Gesamtmasse der jeweiligen Fraktion i
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N_i : Anzahl der Makromoleküle in der Fraktion i
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f : Gesamtanzahl aller Fraktionen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_{i} [mi] = Stoffmenge [Masse] des i-mers; Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n [Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m ] = Summe aller Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_{i} [mi]
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_{i} = Molenbruch des i-mers
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_{i} = Molmasse des i-mers, Mi = iFehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \cdot Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_{0}
M0 [Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_{0} ] = mittlere Molmasse [Stoffmenge] einer monomeren Einheit
wi = Massenanteil des i-mers
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): w_{i} = \frac{m_{i}}{\sum_{i=1}^\infty m_{i}} = x_{i} \cdot \frac{M_{i}}{\bar M_n} = i \cdot x_{i} \cdot \frac{n}{n_0}

Bestimmungsmethoden

Folgende Analysenmethoden haben sich zur Bestimmung der Molmassenverteilung bewährt:

Die GPC und die Zentrifugation werden auch zur präparativen Polymerfraktionierung eingesetzt.

Polydispersität

Physikalische, mechanische und rheologische Eigenschaften werden oft durch die Polymolekularität (das Verhältnis von Gewichtsmittel zu Zahlenmittel) bestimmt.
Dieses Verhältnis wird auch Polydispersität Q genannt und ist ein Maß für die Breite einer Molmassenverteilung (MMV). Je größer Q, desto breiter ist die MMV.
Q=MwMn1
Im Fall, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q = 1 ist, gilt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \overline {M}_n = \overline {M}_w = \overline {M}_z
Zutreffen wird dieses, wenn die Makromoleküle biologischen Ursprungs sind, z.B. Proteine, Polysaccharide, DNA, die alle die gleiche Molmasse haben.
Für synthetische Polymere hingegen gilt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \overline {M}_n < \overline {M}_{ \eta } < \overline {M}_w < \overline {M}_z

Das Verhältnis aus Zahlenmittel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \overline {M}_n und der mittleren Molmasse einer monomeren Einheit M0 gibt den Polymerisationsgrad Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_{n} an. Er beschreibt, wie viele monomere Einheiten zu einem Polymer reagiert haben.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_{n} = \frac{\overline {M}_n}{M_0}

Mittlerer Polymerisationsgrad

Allgemein erhält man den mittleren Polymerisationsgrad durch Division der mittleren molaren Masse durch die molare Masse des Monomeren.

Bei nicht radikalischer Polymerisation muss beachtet werden, ob und welche Gruppen bei der Bindung eines Monomeren abgespalten werden, und dies muss in den Berechnungen berücksichtigt werden.

Ebenso gelten die folgenden Formeln nicht für Copolymerisationen.

Zahlenmittel

Xn=i=1fNiMii=1fNi1MMono=MnMMono

Gewichtsmittel

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \overline {X}_w = \frac {\sum_{i=1}^f m_i M_i } {\sum_{i=1}^f m_i } \cdot \frac {1} {M_{\mathrm {Mono}}} = \frac {\sum_{i=1}^f N_i M_i^2 } {\sum_{i=1}^f N_i M_i } \cdot \frac {1} {M_{\mathrm {Mono}}} = \frac { \overline {M}_w } {M_{\mathrm {Mono}}}

Viskositätsmittel

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \overline {X}_{ \eta } = \left( \frac{\sum_{i=1}^f N_i M_i^{(1+ \alpha)} }{\sum_{i=1}^fN_i M_i} \right)^{\frac{1}{\alpha}} \cdot \frac {1} {M_{\mathrm {Mono}}} = \frac { \overline {M}_{ \eta }} {M_{\mathrm {Mono}}}

Molekulare Uneinheitlichkeit

Die molekulare Uneinheitlichkeit U ist ein mathematisches Maß für die Uneinheitlichkeit eines Polymerisats, bzw. für die Breite der Molmassenverteilung.

U=MwMn1

Je kleiner dieser Wert ist, umso einheitlicher ist das Polymerisat, umso enger ist die Molmassenverteilung.

Einzelnachweise

  1. M. D. Lechner, E. H. Nordmeier und K. Gehrke: Makromolekulare Chemie. Birkhäuser, 2010, ISBN 978-3-7643-8890-4, S. 245.

Literatur

  • J. M. G. Cowie: Chemie und Physik der synthetischen Polymeren; Vieweg, 2 Ed., 1991.
  • K. Matyjaszewski, T.P. Davis: Handbook of Radical Polymerization; Wiley, 2002.
  • Bernd Tieke (2000): Makromolekulare Chemie. Eine Einführung Wiley-VCH, Weinheim. ISBN 978-3-527-29364-3.