Dreifachbindung

Erweiterte Suche

Eine Dreifachbindung ist eine Form der chemischen Bindung zwischen „zwei“ Atomen, die über Elektronenpaare vermittelt wird (→ Elektronenpaarbindung). Zwischen den Atomen gewährleisten drei Paare von Bindungselektronen den Zusammenhalt des darauf aufbauenden Moleküls.

Reaktivität von Dreifachbindungen

Stoffe mit Dreifachbindungen
Angabe der Bindungslängen in Pikometern [pm]
Acetylene-CRC-IR-dimensions-2D.png
Cyanogen-2D-dimensions.png
Carbon monoxide 2D.svg
Ethin
Dicyan
Kohlenstoffmonoxid

Eine Dreifachbindung hat eine sehr hohe Elektronendichte und sollte daher leicht elektrophile Additionsreaktionen eingehen. Im Fall von Kohlenstoff-Kohlenstoff-Dreifachbindungen trifft dies auch zu. Eine wesentliche Rolle spielt hierbei, dass C–C-Dreifachbindungen energiereicher sind als C–C-Doppel- oder Einfachbindungen (Bei der Bildung einer Dreifachbindung werden durchschnittlich 811 kJ·mol−1 frei, für jede Doppelbindung 615 kJ·mol−1 und für jede Einfachbindung 345 kJ·mol−1).[1] Dadurch wird ersichtlich, dass die Energieabgabe bei der Entstehung von drei einzelnen Bindungen anstelle einer einzigen Dreifachbindung höher ist. Die Differenzen werden in den meisten Fällen leicht durch die neu entstehenden Bindungen aufgebracht, und es resultiert üblicherweise ein beträchtlicher Energiegewinn bei Additionen an C–C-Dreifachbindungen.

Molekularer Stickstoff
Kohlenstoffmonoxid

Beim Stickstoff sind die Verhältnisse genau umgekehrt. Die Dreifachbindung im Stickstoffmolekül N2 ist mit einer Bindungsenergie von 945 kJ·mol-1 relativ sehr viel energieärmer (=stabiler) als eine N-N-Doppelbindung (bei deren Bildung 466 kJ·mol−1) oder gar eine Einfachbindung (bei deren Bildung nur 159 kJ·mol−1 frei wird)[1]. Dadurch wird ersichtlich, dass die Energieabgabe bei der Entstehung von drei einzelnen Bindungen anstelle einer einzigen Dreifachbindung niedriger ist. Diese Energieunterschiede können normalerweise nicht über die Bildung zusätzlicher Bindungen mit den Reaktionspartnern aufgebracht werden, und daher ist molekularer Stickstoff ein bekanntes Beispiel für das Auftreten einer starken Dreifachbindung mit hoher Stabilität und trägem Reaktionsverhalten.

Die höchste Bindungsenergie (1077 kJ·mol−1)[1] einer Dreifachbindung hat das Molekül Kohlenstoffmonoxid (CO), da hier zusätzlich zur Dreifachbindung eine schwache ionische Bindung dazukommt.

Orbitalmodell der Dreifachbindung

Aus quantenchemischer Sicht kommen Bindungen durch Überlappung von Atomorbitalen zu einem Molekülorbital zustande. Die geläufigste Beschreibung der Dreifachbindung in Alkinen ist über eine Sigma-Bindung aus sp-Hybridorbitalen, die zwischen der Kernverbindungsachse liegt und zwei Pi-Bindungen, die untereinander einen Winkel von 90 Grad bilden und beide außerhalb der Kernverbindungsachse liegen. Eine alternative, vollkommen äquivalente Beschreibung benutzt drei gleichwertige „Bananenbindungen“, die durch Überlappung von sp3-Hybridorbitalen gebildet werden.

Bindungslänge nach Pauling

Kovalente Bindungslängen können nach Pauling als Summe zweier Atomradien abgeschätzt werden. Auf der Grundlage von experimentellen und quantenchemischen Daten wurden additive Kovalenzradien für Atome in Dreifachbindungen für die Elemente Beryllium bis Copernicium veröffentlicht.[2] Der verwendete Datensatz ist selbstkonsistent und enthält nur einen Radius für alle Oxidationszustände und Koordinationszahlen der berücksichtigten Elemente. Durch einfaches Addieren der Atomradien kann eine Vorhersage über die Dreifachbindungslänge gemacht werden.[3]

Moleküle mit Dreifachbindungen

Alkine

Moleküle, die C–C-Dreifachbindungen enthalten, gehören der Molekülklasse der Alkine an. Die Chemie der Alkine ist durch Additionen von Elektrophilen an diese Bindung gekennzeichnet. Ein an einer Dreifachbindung beteiligtes Kohlenstoffatom ist sp-hybridisiert, daher sind Alkinanionen entsprechend stabil und als Nukleophile einsetzbar. Die Bindungslänge einer C–C-Dreifachbindung in Alkinen beträgt 120 pm.

Dreifachbindung mit Bor

2012 gelang es einer Arbeitsgruppe der Universität Würzburg erstmals eine Verbindung herzustellen, die eine bis etwa 200 °C stabile Dreifachbindung zwischen zwei Bor-Atomen enthält.[4]

Einzelnachweise

  1. 1,0 1,1 1,2 Arnold Frederik Holleman, Egon Wiberg: Lehrbuch der Anorganischen Chemie. 101. Auflage. De Gruyter, Berlin 1995, ISBN 3-11-012641-9.
  2. Pekka Pyykkö, Sebastian Riedel, Michael Patzschke: Triple-Bond Covalent Radii. In: Chemistry. A European Journal. 11, Nr. 12, 2005, S. 3511–3520 (doi:10.1002/chem.200401299).
  3. Radii of Covalent Triple-Bonds bei psychem.de, nach Pekka Pyykkö, Sebastian Riedel, Michael Patzschke: Chem. Eur. J. 2005, 12, S. 3511–3520.
  4. Lars Fischer: Club der Dreifachbindungen bekommt neues Mitglied. Meldung bei Spektrum.de vom 15. Juni 2012.

Siehe auch

Die cosmos-indirekt.de:News der letzten Tage

25.09.2023
Thermodynamik | Optik | Akustik
Licht- und Schallwellen enthüllen negativen Druck
Negativer Druck ist ein seltenes und schwer nachzuweisendes Phänomen in der Physik.
20.09.2023
Sterne | Teleskope | Astrophysik
JWST knipst Überschall-Gasjet eines jungen Sterns
Die sogenannten Herbig-Haro-Objekte (HH) sind leuchtende Gasströme, die das Wachstum von Sternbabies signalisieren.
18.09.2023
Optik | Quantenphysik
Ein linearer Weg zu effizienten Quantentechnologien
Forschende haben gezeigt, dass eine Schlüsselkomponente für viele Verfahren der Quanteninformatik und der Quantenkommunikation mit einer Effizienz ausgeführt werden kann, die jenseits der üblicherweise angenommenen oberen theoretischen Grenze liegt.
17.01.1900
Thermodynamik
Effizientes Training für künstliche Intelligenz
Neuartige physik-basierte selbstlernende Maschinen könnten heutige künstliche neuronale Netze ersetzen und damit Energie sparen.
16.01.1900
Quantencomputer
Daten quantensicher verschlüsseln
Aufgrund ihrer speziellen Funktionsweise wird es für Quantencomputer möglich sein, die derzeit verwendeten Verschlüsselungsmethoden zu knacken, doch ein Wettbewerb der US-Bundesbehörde NIST soll das ändern.
15.01.1900
Teilchenphysik
Schwer fassbaren Neutrinos auf der Spur
Wichtiger Meilenstein im Experiment „Project 8“ zur Messung der Neutrinomasse erreicht.
17.09.2023
Schwarze Löcher
Neues zu supermassereichen binären Schwarzen Löchern in aktiven galaktischen Kernen
Ein internationales Team unter der Leitung von Silke Britzen vom MPI für Radioastronomie in Bonn hat Blazare untersucht, dabei handelt es sich um akkretierende supermassereiche schwarze Löcher in den Zentren von Galaxien.
14.09.2023
Sterne | Teleskope | Astrophysik
ESO-Teleskope helfen bei der Lösung eines Pulsar-Rätsels
Durch eine bemerkenswerte Beobachtungsreihe, an der zwölf Teleskope sowohl am Erdboden als auch im Weltraum beteiligt waren, darunter drei Standorte der Europäischen Südsternwarte (ESO), haben Astronom*innen das seltsame Verhalten eines Pulsars entschlüsselt, eines sich extrem schnell drehenden toten Sterns.
30.08.2023
Quantenphysik
Verschränkung macht Quantensensoren empfindlicher
Quantenphysik hat die Entwicklung von Sensoren ermöglicht, die die Präzision herkömmlicher Instrumente weit übertreffen.
30.08.2023
Atomphysik | Teilchenphysik
Ein einzelnes Ion als Thermometer
Messungen mit neuem Verfahren zur Bestimmung der Frequenzverschiebung durch thermische Strahlung an der PTB unterstützen eine mögliche Neudefinition der Sekunde durch optische Uhren.