Elektronendichte

Erweiterte Suche

Die Elektronendichte $ n(\vec{r}) $ bzw. $ n_e(\vec{r}) $ ist in der Physik eine Ladungsträgerdichte, die die ortsabhängige Anzahl der Elektronen pro Volumen angibt (Dichtefunktion). Mathematisch gesehen handelt es sich um ein Skalarfeld des dreidimensionalen Ortsraumes.

Es handelt sich um eine Messgröße (Einheit m-3), die häufig bei der Beschreibung von Molekülen und Festkörpern eingesetzt wird (Dichtefunktionaltheorie), um komplizierte hochdimensionale Wellenfunktionen bzw. quantenmechanische Zustandsvektoren zu vermeiden. Außerdem wird sie in der Plasmaphysik, in der Röntgenstrukturanalyse (als Fourier-Transformierte des Strukturfaktors) und in der Halbleiterphysik angewendet.

Definitionsgemäß muss das Integral der Elektronendichte, das sich über den gesamten Raumbereich $ V $ erstreckt, gleich der Anzahl $ N $ an Elektronen sein:

$ N_e = \int_{V} n_e(\vec{r})dV. $

Die typische Elektronendichte für Leitungselektronen liegt in metallischen Festkörpern bei $ n_\mathrm{e} = 10^{28} \, \mathrm{m}^{-3}. $

Erwartungswert des Elektronendichte-Operators

Allgemein werden in der Quantenmechanik Messgrößen mit hermiteschen Operatoren identifiziert, deren Eigenvektoren die Zustände repräsentieren, in denen das System einen scharfen Messwert bezüglich der Messgröße annimmt, und deren Eigenwerte den zugehörigen Messwerten selbst entsprechen.

Die Elektronendichte wird als Erwartungswert des Elektronendichte-Operators identifiziert:

$ n(\vec{r}) := \langle \Psi|\hat{n}(\vec{r})|\Psi\rangle. $

Dieser Operator muss folgende Eigenschaften erfüllen:

  • Integrierbarkeit des Erwartungswertes (strenger: Integral über das gesamte Volumen muss der Teilchenzahl entsprechen)
  • Positive Semidefinitheit: Erwartungswert muss überall größer gleich 0 sein.

Durch Identifikation der Elektronendichte als Randverteilung der Aufenthaltswahrscheinlichkeitsdichte (Betragsquadrat der Wellenfunktion):

$ n(\vec{r})=N \sum_{s_{1}} \dots \sum_{s_{N}} \int d\vec{r_2} \dots \int d\vec{r_N}|\Psi(\mathbf{r},s_{1},\mathbf{r}_{2},s_{2}, \dots,\mathbf{r}_{N},s_{N})|^2 $

In Worten: Man hält irgend ein Elektron am Ort $ \vec{r} $ fest und summiert über die Wahrscheinlichkeiten aller möglicher Anordnungen der anderen Elektronen.

Nach Darstellung des Erwartungswertes in der üblichen Form:

$ n(\vec{r})= \langle \psi |\hat n(\vec{r})|\psi \rangle = \sum_{s_{1}} \dots \sum_{s_{N}} \int d\vec{r_1} \dots \int d\vec{r_N}\Psi(\mathbf{r}_1,s_{1},\mathbf{r}_{2},s_{2}, \dots,\mathbf{r}_{N},s_{N})^*\left(\sum_{i=1}^{N} \delta(\vec{r_i}-\vec{r})\right)\Psi(\mathbf{r}_1,s_{1},\mathbf{r}_{2},s_{2}, \dots,\mathbf{r}_{N},s_{N}) $

lässt sich der zugehörige Operator als folgender identifizieren: $ \hat{n}(\vec{r_1}, \dots,\vec{r_N,\vec{r}})= \sum_{i=1}^{N} \delta(\vec{r_i}-\vec{r}) $

und man erkennt, dass es sich hierbei um keinen Operator im eigentlichen Sinne handelt, da er keine quadratintegrierbare Funktion in eine quadratintegrierbare Funktion überführt und darum nicht der Definition eines Operators im Raum der quadratintegrierbaren Funktionen genügt.

Es gibt somit keinen Teilchendichteoperator, aber es existiert ein lineares Funktional (Distribution), dessen Integralkern gemeinhin als der Teilchendichteoperator bezeichnet wird.

Es handelt sich hierbei um ein, im Sinn der durch die 2-Norm induzierten Topologie, nicht stetiges lineares Funktional auf den lokal absolut Lebesgue-integrierbaren Funktionen.

Hier im Speziellen sind die absolut Lebesgue-integrierbaren Funktionen von der Form $ \phi=\overline{\psi_1}\psi_2 $ für die gilt $ \psi_1,\psi_2\in L^2(\mathbb{R}^n,\mathbb{C}) $), und die $ \delta(\vec{r}_i-\vec{r}) $ eine Erweiterung der aus der Distributionentheorie bekannten Delta-Distributionen mit Hilfe von Delta Folgen auf $ L^1_{loc}(\mathbb{R}^n,\mathbb{C}) $ darstellen.

Innerhalb der Hartree-Fock-Näherung erhält man die Elektronendichte über die Summe der Orbitaldichten:

$ \hat{n}(\vec{r}) = \sum_{i=1}^{N} \phi_i(\vec{r})\overline \phi_i(\vec{r}). $

Weblinks

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

17.01.2022
Quantenphysik | Teilchenphysik
Ladungsradien als Prüfstein neuester Kernmodelle
Ein internationales Forschungsprojekt hat die modernen Möglichkeiten der Erzeugung radioaktiver Isotope genutzt, um erstmals die Ladungsradien entlang einer Reihe kurzlebiger Nickelisotope zu bestimmen.
13.01.2022
Sonnensysteme | Planeten | Elektrodynamik
Sauerstoff-Ionen in Jupiters innersten Strahlungsgürteln
In den inneren Strahlungsgürteln des Jupiters finden Forscher hochenergetische Sauerstoff- und Schwefel-Ionen – und eine bisher unbekannte Ionenquelle.
12.01.2022
Schwarze Löcher | Relativitätstheorie
Die Suche nach einem kosmischen Gravitationswellenhintergrund
Ein internationales Team von Astronomen gibt die Ergebnisse einer umfassenden Suche nach einem niederfrequenten Gravitationswellenhintergrund bekannt.
11.01.2022
Exoplaneten
Ein rugbyballförmiger Exoplanet
Mithilfe des Weltraumteleskops CHEOPS konnte ein internationales Team von Forschenden zum ersten Mal die Verformung eines Exoplaneten nachweisen.
07.01.2022
Optik | Quantenoptik | Wellenlehre
Aufbruch in neue Frequenzbereiche
Ein internationales Team von Physikern hat eine Messmethode zur Beobachtung licht-induzierter Vorgänge in Festkörpern erweitert.
06.01.2022
Elektrodynamik | Quantenphysik | Teilchenphysik
Kernfusion durch künstliche Blitze
Gepulste elektrische Felder, die zum Beispiel durch Blitzeinschläge verursacht werden, machen sich als Spannungsspitzen bemerkbar und stellen eine zerstörerische Gefahr für elektronische Bauteile dar.
05.01.2022
Elektrodynamik | Teilchenphysik
Materie/Antimaterie-Symmetrie und Antimaterie-Uhr auf einmal getestet
Die BASE-Kollaboration am CERN berichtet über den weltweit genauesten Vergleich zwischen Protonen und Antiprotonen: Die Verhältnisse von Ladung zu Masse von Antiprotonen und Protonen sind auf elf Stellen identisch.
04.01.2022
Milchstraße
Orions Feuerstelle: Ein neues Bild des Flammennebels
Auf diesem neuen Bild der Europäischen Südsternwarte (ESO) bietet der Orion ein spektakuläres Feuerwerk zur Einstimmung auf die Festtage und das neue Jahr.
03.01.2022
Sterne | Elektrodynamik | Plasmaphysik
Die Sonne ins Labor holen
Warum die Sonnenkorona Temperaturen von mehreren Millionen Grad Celsius erreicht, ist eines der großen Rätsel der Sonnenphysik.
30.12.2021
Sonnensysteme | Planeten
Rekonstruktion kosmischer Geschichte kann Eigenschaften von Merkur, Venus, Erde und Mars erklären
Astronomen ist es gelungen, die Eigenschaften der inneren Planeten unseres Sonnensystems aus unserer kosmischen Geschichte heraus zu erklären: durch Ringe in der Scheibe aus Gas und Staub, in der die Planeten entstanden sind.