Damköhler-Zahl

Damköhler-Zahl

Die Damköhler-Zahlen (Da) (entwickelt von Gerhard Damköhler, 1908-1944) sind dimensionslose Kennzahlen der chemischen Reaktionstechnik. Bekannt sind vier verschiedene Damköhler-Zahlen (DaI, DaII, DaIII, DaIV), die als Damköhler-Zahl n-ter Ordnung bekannt sind, sowie eine turbulente Damköhler-Zahl (Dat).

Damköhler-Zahl erster Ordnung

Die Damköhler-Zahl erster Ordnung DaI beschreibt das Verhältnis der Geschwindigkeitskonstanten der Reaktion zur Geschwindigkeitskonstanten des konvektiven Stofftransports. Sie ist definiert als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): DaI = k \cdot \tau \cdot c_0^{n-1}= \frac{k \cdot L \cdot c_0^{n-1}}{w} ,

mit: k = Geschwindigkeitskonstante, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau = Verweilzeit bzw. Reaktionszeit, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c_0 = Anfangskonzentration, n = Reaktionsordnung, L = charakteristische Länge und w = Strömungsgeschwindigkeit. Für die Beschreibung diskontinuierlicher Reaktoren ersetzt man die Verweilzeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau durch die Reaktionszeit $ t_{r} $. Somit erhält man in deutlich übersichtlicherer Darstellung die dimensionslose Massenbilanz des idealen Rührkesselreaktors.

Damköhler-Zahl zweiter Ordnung

Die Damköhler-Zahl zweiter Ordnung DaII findet sich bei der Beschreibung von inneren Stofftransportvorgängen (Porendiffusion) an Oberflächen, zum Beispiel an Katalysatorkugeln. Sie ist als Verhältnis von Reaktionsgeschwindigkeit zur Diffusionsgeschwindigkeit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): DaII = \frac{k \cdot L^2 \cdot c^{n-1}}{D}= \frac{k \cdot c^{n-1}}{\beta \cdot a}

mit: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \beta= D/\delta = Stoffübergangskoeffizient, a = spezifische Austauschfläche. DaII kann als Verhältnis der Reaktionsgeschwindigkeit zu Oberflächenbedingungen zu der Diffusionsgeschwindigkeit durch die äußere Oberfläche des Katalysatorpellets gesehen werden.

Damköhler-Zahl dritter Ordnung und vierter Ordnung

Die Damköhler-Zahl dritter Ordnung DaIII und die Damköhler-Zahl vierter Ordnung DaIV werden zur Abschätzung von Betriebsbedingungen bei polytroper Betriebsweise von Reaktoren verwendet.

Turbulente Damköhler-Zahl

Die turbulente Damköhler-Zahl Dat (in der Verbrennungsforschung meist nur als Da bezeichnet) beschreibt das Verhältnis zwischen der makroskopischen Zeitskala einer turbulenten Strömung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau_0 und der Zeitskala einer chemischen Reaktion $ \tau _{R} $:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Da_t:=\frac{\tau_0}{\tau_\text{R}} \approx \frac{l_0\,v_\text{R}}{v'\,l_\text{R}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): l steht hierbei für die jeweilige Längenskala, wobei als makroskopische Längenskala meist eine integrale Längenskala gewählt wird.[1] Diese dient als Maß für den Durchmesser der energiereichsten (und damit auch in der Regel der größten) Wirbel in der Strömung. Deren Umlaufgeschwindigkeit ist etwa gleich der Standardabweichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v' der Strömungsgeschwindigkeit. Als charakteristische Ausbreitungsgeschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v_\text{R} für die chemischen Reaktionen dient in der Verbrennungsforschung meist die laminare Flammengeschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): s_\text{L} , also die Geschwindigkeit, mit der die Flammenfront im laminaren Fall propagiert: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v_\text{R} = s_\text{L} Analog dazu ist es in Bezug auf Verbrennungsprozesse üblich, die Dicke der laminaren Flammenfront Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): l_\text{L} als Reaktionslängenskala einzusetzen: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): l_\text{R} = l_\text{L} [2]

Anhand der turbulenten Damköhler-Zahl lassen sich Aussagen über die räumliche Struktur und das zeitliche Verhalten des Reaktionsgebiets in einer turbulenten reagierenden Strömung treffen. [3]

Siehe auch

Einzelnachweise

  1. Stephen B. Pope: Turbulent Flows. Cambridge University Press, 2010, S. 197.
  2. Jürgen Warnatz, Ulrich Maas, Robert W. Dibble: Verbrennung: Physikalisch-Chemische Grundlagen, Modellierung und Simulation, Experimente, Schadstoffentstehung (3. Auflage). Springer, 2001, S. 221-224.
  3. Norbert Peters: Turbulent Combustion. Cambridge University Press, 2000, S. 78.