Dampfblasenkoeffizient

Erweiterte Suche

Der Dampfblasenkoeffizient (auch Kühlmittelverlustkoeffizient oder Voidkoeffizient genannt) ist ein Maß für die Veränderung der Reaktivität eines Kernreaktors bei Bildung von Dampfblasen im Kühlmittel oder im Moderator. Eine Reaktivitätsänderung, die nicht ausgeglichen wird, hat ihrerseits Änderungen der Wärmeleistung des Reaktors zur Folge. Deshalb ist der Dampfblasenkoeffizient wichtig für die Sicherheit des Reaktors.

Die Bezeichnung Dampfblasenkoeffizient wird hauptsächlich bei Siedewasserreaktoren benutzt, bei denen die Dampferzeugung Betriebszweck ist. Bei allen anderen Reaktortypen ist Blasen- oder Hohlraumbildung eine Abweichung vom Normalbetrieb, und hier wird vom Kühlmittelverlust- oder Voidkoeffizienten gesprochen. Physikalisch handelt es sich um dieselbe Größe.

Erklärung und Definition

Als Reaktorkühlmittel dient bei den meisten Reaktortypen unter Druck stehendes Wasser, bei anderen flüssiges Metall oder Gas. Sobald die Kerntemperatur weit genug ansteigt, beginnt ein flüssiges Kühlmittel zu sieden, wodurch Dampfblasen entstehen, also Hohlräume im Kühlmittel (beim Siedewasserreaktor ist das der normale Betriebszustand). Durch Verlust des Kühlmittels kann es ebenfalls zur Bildung von Hohlräumen kommen (Kühlmittelverluststörfall).

Das flüssige Kühlmittel dient meist auch als Moderator und wirkt außerdem unvermeidlich in einem gewissen Maß als Neutronenabsorber. Die Gasblasen, also das dampfförmige Kühlmittel, zeigen aufgrund ihrer viel geringeren Dichte viel weniger Wirkung als das flüssige Kühlmittel, wodurch sich der Neutronen-Multiplikationsfaktor k (siehe Kritikalität) ändert. Für eine kleine Änderung des Blasenanteils am Gesamt-Kühlmittelvolumen ist die entsprechende Änderung $ \delta \rho $ der Reaktivität $ \rho $ = (k-1)/k proportional der prozentualen Volumenänderung $ \delta V $; die Proportionalitätskonstante ist der Dampfblasenkoeffizient

$ \alpha = \frac {\delta \rho} {\delta V} $ .

Der Dampfblasenkoeffizient eines Reaktors mit flüssigem Moderator und/oder Kühlmittel kann, je nach Konstruktion, in allen Betriebszuständen positiv oder in allen Betriebszuständen negativ sein oder auch abhängig vom Betriebszustand sein Vorzeichen wechseln. Bei Reaktoren, deren Kern keine Flüssigkeiten enthält, gibt es naturgemäß keine Blasenbildung und keinen Dampfblasenkoeffizienten.

Typische Zahlenwerte des Dampfblasenkoeffizienten $ \alpha $ für einen Siedewasserreaktor sind z. B.:[1]

−1,2·10−3/Vol% bei 20 % Blasenanteil,

−1,6·10−3/Vol% bei 40 % Blasenanteil.

Positiver Dampfblasenkoeffizient

Zeitlicher Verlauf der Reaktorleistung nach einem Kühlmittelverlust bei negativem und bei positivem Dampfblasenkoeffizienten

Ein positiver Dampfblasenkoeffizient bedeutet, dass sich die thermische Leistung eines Reaktors erhöht, wenn sich im Kern Gasblasen bilden oder Hohlräume durch den Verlust von Kühlmittel entstehen. Bei genügend großem Dampfblasenkoeffizienten und einem nicht ausreichend schnellen Regelsystem kann sich eine positive Rückkopplung ergeben, sodass das gesamte Kühlmittel in kürzester Zeit verdampft.

Dieser Fall trat beim Reaktorunfall von Tschernobyl ein, bei dem ein Kernkraftwerksreaktor des Typs RBMK mit positivem Dampfblasenkoeffizient durch Fehlbedienung außer Kontrolle geriet. Als Moderator dient bei diesem Typ nicht das Kühlwasser, sondern außerhalb der Druckrohre angebrachte Blöcke aus Graphit. Die zu hoch gewordene Wärmeleistung führte zu erhöhter Verdampfung des Wassers. Da Wasserdampf eine viel geringere Dichte als Wasser hat, wurden jetzt weniger der aus dem Graphit zurückdiffundierenden thermischen Neutronen auf dem Weg zum Brennstoff absorbiert, die Reaktivität also erhöht. In Verbindung mit weiteren konstruktiven Besonderheiten führte dies zur prompten Überkritikalität von Teilbereichen des Reaktorkerns und damit zur Katastrophe.

Auch beim Reaktortyp CANDU ist der Kühlmittelverlustkoeffizient positiv[2], jedoch so klein, dass entsprechende Leistungsänderungen durch die Reaktorsteuerung leicht beherrscht werden.

Negativer Dampfblasenkoeffizient

Ein negativer Dampfblasenkoeffizient bedeutet, dass sich die thermische Leistung im Normalfall verringert, wenn sich in Kühlwasser oder Moderator Hohlräume bilden. Das bedeutet aber auch, dass sich die Reaktivität erhöht, wenn die Größe der Hohlräume abnimmt, was z. B. in einem Siedewasserreaktor bei plötzlichem Druckanstieg passiert, etwa wenn versehentlich Dampfleitungen abgeriegelt werden.

Bei „normalen“ Leichtwasserreaktoren dient das Kühlmittel zugleich als Moderator. Die Reaktoren sind leicht untermoderiert ausgelegt, d. h., eine Verringerung der Moderatormenge verringert unter allen Umständen die Reaktivität. Solche Reaktoren mit stets negativem Dampfblasenkoeffizienten werden gelegentlich als inhärent stabil oder eigenstabil bezeichnet.

Diese Stabilität ist aber nicht mit einer sogenannten "inhärenten Sicherheit" des Reaktors zu verwechseln. Zum Beispiel ändert auch ein negativer Dampfblasenkoeffizient nichts daran, dass blasendurchsetztes Wasser weniger wirksam kühlt, und vor allem nichts an der Nachzerfallswärme, die bei einem großen Kühlmittelverluststörfall und Versagen jeder Notkühlung zur Kernschmelze führen kann. So ist beim Störfall im März 1979 beim Kernkraftwerk Three Mile Island, einer Anlage mit negativem Dampfblasenkoeffizienten, eine partielle Kernschmelze erfolgt.

Literatur

  • Dieter Emendörfer: Theorie der Kernreaktoren. Mannheim 1993[1]

Einzelnachweise

  1. 1,0 1,1 Dieter Emendörfer: Theorie der Kernreaktoren. Mannheim 1993.
  2. Why do CANDU reactors have a "positive void coefficient"? (in Englisch)

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?