Zustandsgleichung von Benedict-Webb-Rubin

Zustandsgleichung von Benedict-Webb-Rubin

Die Zustandsgleichung von Benedict-Webb-Rubin ist eine Zustandsgleichung für reale Gase. Sie ist zur Beschreibung dichter Gase geeignet und stellt einen guten Kompromiss zwischen Einfachheit und Genauigkeit dar.

Die ursprüngliche BWR-Gleichung

Sie enthält acht Konstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A_0 , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B_0 , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): C_0 , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a , $ b $ , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma , die für viele Stoffe tabelliert sind und lautet:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p = RTV_m^{-1} + \left(B_0 RT-A_0 - \frac{C_0}{T^2} \right) V_m^{-2} + \left(bRT-a\right) V_m^{-3} + \alpha a V_m^{-6} + \frac{c}{T^2}V_m^{-3}\left(1 + \gamma V_m ^{-2}\right)\exp\left(-\gamma V_m^{-2}\right)

Die BWRS-Gleichung

Professor Kenneth Starling von der Universität Oklahoma modifizierte die BWR-Gleichung; die resultierende BWRS-Gleichung enthält die zusätzlichen drei Konstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D_0 , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_0 und $ d $ hinzu.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p = RTV_m^{-1} + \left(B_0 RT-A_0 - \frac{C_0}{T^2}+\frac{D_0}{T^3}-\frac{E_0}{T^4} \right) V_m^{-2} + \left(bRT-a-\frac{d}{T}\right) V_m^{-3} + \left(a + \frac{d}{T}\right)\alpha V_m^{-6} + \frac{c}{T^2}V_m^{-3}\left(1 + \gamma V_m ^{-2}\right)\exp\left(-\gamma V_m^{-2}\right)

Die einzelnen Formelzeichen stehen für folgende Größen:

Literatur