Dieser Artikel beschreibt die Technik im Allgemeinen, zum Schulfach Technik siehe Technik (Schulfach) und Technikdidaktik.

Das Wort Technik stammt vom griechischen τεχνικός (technikós) und leitet sich ab von τέχνη (téchne, dt. etwa Kunst, Handwerk, Kunstfertigkeit). „Technik“ kann bedeuten:

  1. die Gesamtheit der menschengemachten Gegenstände (Maschinen, Geräte, Apparate usw.);
  2. ein besonderes Können in beliebigen Bereichen menschlicher Tätigkeit (Fertigkeit, Geschicklichkeit; Gewandtheit usw., z. B. körperlich: Technik des Weitsprungs; geistig: Technik des Kopfrechnens; sozial: Technik der Unternehmensführung);
  3. eine Form des Handelns und Wissens in beliebigen Bereichen menschlicher Tätigkeit (Planmäßigkeit, Zweckrationalität, Wiederholbarkeit usw.);
  4. das Prinzip der menschlichen Weltbemächtigung.

Es gibt Versuche, diese verschiedenen Bedeutungen auf einen gemeinsamen Grundbegriff zurückzuführen. Doch scheinen die Technikbegriffe zu unterschiedlich, als dass man sie ohne Weiteres vereinheitlichen könnte. Im Folgenden werden weitläufige Wortverwendungen vor allem nach (2), (3) und (4) beiseitegelassen. „Technik“ wird als wohlbestimmter Ausdruck der Technikforschung und -lehre betrachtet, der die Bedeutung (1) als notwendiges, wenn auch nicht hinreichendes Bestimmungsmerkmal enthält.

Definition

Im Sinne der VDI-Richtlinie 3780 umfasst Technik:[1]

  1. „die Menge der nutzenorientierten, künstlichen, gegenständlichen Gebilde (Artefakte oder Sachsysteme)“;
  2. „die Menge menschlicher Handlungen und Einrichtungen, in denen Sachsysteme entstehen, und“
  3. „die Menge menschlicher Handlungen, in denen Sachsysteme verwendet werden.“

Diese Begriffsbestimmung enthält keine Spekulationen über das „Wesen der Technik“, sondern beschreibt lediglich, welche Erscheinungen unter dem Namen „Technik“ zusammenzufassen sind. „Technik“ bezeichnet also zunächst die von Menschen gemachten Gegenstände, aber auch die Entstehung und Verwendung der technischen Sachen und das dafür erforderliche Können und Wissen. Technik ist in diesem Verständnis kein isolierter, selbständiger Bereich, sondern auf das Engste mit Wirtschaft, Gesellschaft, Politik und Kultur verflochten.

Fließende Übergänge gibt es erstens zu Gegenständen der bildenden Kunst (Architektur, Kunsthandwerk, Industriedesign) und zweitens zu natürlichen Erscheinungen und Lebewesen, soweit diese durch menschlichen Eingriff mehr oder weniger stark verändert werden (Kulturlandschaften, Gärten, Zuchtpflanzen und Zuchttiere, heute zunehmend auch gentechnische Hervorbringungen, die teils schon den Charakter von Artefakten annehmen). Die gelegentlich als neuartige, „abstrakte“ oder „transklassische“ Technik aufgefasste Programmierung elektronischer Datenverarbeitungsgeräte lässt sich der Teilmenge (3) der modernen Technikdefinition zuordnen, da sie eine besondere Fertigkeit für die Verwendung der Computer darstellt. Oft wird heute gleichbedeutend mit „Technik“ der Ausdruck „Technologie“ verwendet (z. B. Raumfahrttechnologie). Aus fachgeschichtlichen und sprachlogischen Gründen meinen manche Technikforscher, dieser Ausdruck sollte der Wissenschaft von der Technik vorbehalten bleiben (Allgemeine Technologie).[2]

Technische Sachsysteme

In den Technikwissenschaften – dieser Ausdruck löst allmählich den Namen „Ingenieurwissenschaften“ ab – ist neuerdings mit der Modellvorstellung des technischen (Sach-)Systems ein allgemeiner Begriff für beliebige technische Hervorbringungen entstanden, der an die Stelle der uneinheitlich gebrauchten und schlecht abgrenzbaren Ausdrücke „Maschine“, „Gerät“, „Apparat“ u. ä. tritt. Ein technisches System „ist durch die Funktion gekennzeichnet, Stoff (Masse), Energie und/oder Information zu wandeln, zu transportieren und/oder zu speichern. Es ist stofflich-konkret und besteht aus Werkstoffen mit definierten Eigenschaften, die aus Systemen der (physikalischen, chemischen, biologischen) Verfahrenstechnik hervorgehen. Es ist ein räumliches Gebilde mit geometrisch definierter Gestalt und setzt sich aus Bauteilen“ mit geometrisch definierter Gestalt „zusammen. Die Gestaltgebung erfolgt in Systemen der Fertigungstechnik“[3]. Gegenständlich verwirklicht wird alle Sachtechnik also in den technischen Systemen der Stoffwandlung. Immer häufiger gründen neue Technologien auf kreativen Kombinationen von bereits bekannten („combinatorial evolution“[4]), wobei die je verfolgten Zwecke in unterschiedlichen Sets von Komponenten ausgedrückt werden können[5]

Die Funktionen der technischen Systeme und die Teilfunktionen ihrer Subsysteme werden durch naturale Wirkungszusammenhänge realisiert, die (bekannten oder noch nicht bekannten) Naturgesetzen unterliegen. W. Brian Arthur definiert als Quintessenz von Technik die Fähigkeit des „capturing phenomena“, d.h. die Kapselung von zuverlässig beherrschten kausalen Wirkungsmechanismen.[6] Noch pointierter drückt es Luhmann aus: Technik sei „funktionierende Simplifikation im Medium der Kausalität“ [7]

Dieser Umstand hat zu der Vorstellung verleitet, Technik wäre gleichbedeutend mit angewandter Naturwissenschaft. Damit aber wird die Bedeutung naturwissenschaftlichen Wissens für die Technik, vor allem hinsichtlich früherer Entwicklungsstadien, stark überschätzt. Auch bei zunehmender Verwissenschaftlichung der modernen Technik unterscheiden sich die Wissensformen der Technikwissenschaften und der technischen Praxis von den Naturwissenschaften derart, dass nicht ohne Weiteres von einer einfachen Anwendung die Rede sein kann[8]. Umgekehrt ist naturwissenschaftliche Forschung häufig auch angewandte Technik, insoweit sie ihre Gegenstände nur mit erheblichem apparativem Aufwand darstellen und untersuchen kann. Naturwissenschaft und Technik sind verschiedenartige, relativ selbständige Bereiche, die einander nur teilweise überschneiden.

Technische Systeme gehen bei aller Künstlichkeit moderner Werkstoffe letztlich auf Naturstoffe zurück, sie setzen bei ihrer Verwendung Stoff und Energie um, und am Ende ihrer Lebensdauer werden sie selbst zu Abfall. So bringen sie grundsätzlich Eingriffe in das natürliche Ökosystem mit sich, die allerdings in der Vergangenheit häufig zu wenig beachtet wurden. Erst mit dem gewaltigen Anstieg der Umweltbelastungen verbreitet sich in den Ingenieurwissenschaften und in der technischen Praxis die Einsicht, dass auch die naturwissenschaftlichen Erkenntnisse der Ökologie bei technischen Systemen zu berücksichtigen sind, damit der Verbrauch an natürlichen Ressourcen und die schädlichen Emissionen und Deponate zugunsten des Umweltschutzes begrenzt werden.

Einteilung

Herkömmlicherweise wird die Technik nach ingenieurwissenschaftlichen Fachgebieten oder nach Industriebranchen eingeteilt (Bergbau- und Hüttentechnik, Bautechnik, Maschinenbau, Fahrzeugtechnik, Feinwerktechnik, Chemietechnik, Elektrotechnik, usw.). Die jeweilige Eigenart der eingesetzten und hervorgebrachten Technik lässt sich damit aber nur sehr unzureichend kennzeichnen; z. B. werden im Maschinenbau energietechnische, produktionstechnische sowie förder- und verkehrstechnische Systeme hergestellt.

Die Beschreibungsmerkmale des technischen Systems erlauben nun eine stimmige Klassifikation nach der Art der Funktion (Wandlung, Transport, Speicherung, etc.) und nach der Kategorie der Objekte (Stoff bzw. Material, Energie, Information, etc.). Verbindet man diese beiden Einteilungen, ergeben sich neun Technikfelder:

  1. Stoffwandlungstechnik (beispielsweise Verfahrenstechnik, Fertigungstechnik, zusammenfassend auch Produktionstechnik)
  2. Stofftransporttechnik (beispielsweise Fördertechnik, Verkehrstechnik)
  3. Stoffspeichertechnik (beispielsweise Lagertechnik, z. T. Bautechnik)
  4. Energiewandlungstechnik
  5. Energieübertragungstechnik
  6. Energiespeichertechnik
  7. Informationsverarbeitungstechnik (einschließlich Mess-, Steuerungs- und Regelungstechnik);
  8. Informationsübertragungstechnik (beispielsweise Nachrichtentechnik)
  9. Informationsspeichertechnik (einschließlich Drucktechnik, Tontechnik, Fototechnik, Filmtechnik).

Das Schema dieser Einteilung ist weithin anerkannt.[9] Die Terminologie in den Technikwissenschaften ist aber nach wie vor sehr uneinheitlich, und so variieren die Bezeichnungen. Manchmal verwendet man die herkömmlichen Ausdrücke, die teilweise zur Erläuterung in Klammern angegeben worden. Oft werden die Teilbereiche (4) bis (6) ungegliedert als "Energietechnik", die Teilbereiche (7) bis (9) zusammenfassend als "Informationstechnik" bezeichnet. Die neun Technikfelder sind ihrerseits noch weiter zu untergliedern. So kann man die Energiewandlungstechnik nach der Art der Energie-Inputs und -Outputs einteilen. Oder man klassifiziert die Informationsspeichertechnik nach dem physikalischen Prinzip des Speichermediums (Buch, Schallplatte, Film, Magnetband, Magnettonplatte, Speicherchip u. a.).

Technikverwendung

Dass Technik nicht in angewandter Naturwissenschaft aufgeht, wird vollends klar, wenn man ihre Verwendungszusammenhänge in den Blick nimmt. Technische Systeme verwirklichen ihre Funktionen grundsätzlich nur im Rahmen gesellschaftlich geprägten menschlichen Handelns, technische Systeme sind immer Teile soziotechnischer Systeme, und sie verkörpern menschliche Zwecksetzungen, Handlungsmuster und Arbeitsprozesse. Entweder ersetzen sie menschliche Handlungs- und Arbeitsfunktionen (Substitution), z. B. der Buchdruck, der die manuelle Vervielfältigung von Schriften erübrigt, oder sie fügen den menschlichen Handlungssystemen neue, nur technisch darstellbare Teilfunktionen hinzu, die Menschen mit ihrer organischen Ausstattung gar nicht leisten könnten (Komplementation), z. B. das Flugzeug, das dem flügellosen Menschen das Fliegen ermöglicht.

Neben die gesellschaftliche Arbeitsteilung (sozioökonomische Produktionsteilung, Berufsdifferenzierung, betriebliche Arbeitszerlegung) tritt im Zuge der Technisierung die soziotechnische Arbeitsteilung, die Aufteilung von Handlungs- und Arbeitsfunktionen zwischen Menschen und technischen Systemen. Im Verlauf der Technikgeschichte wurden immer mehr Handlungs- und Arbeitsfunktionen mit technischen Systemen realisiert. Ein deutliches Muster zeigt sich besonders bei der Substitution: Erst ersetzen Werkzeuge die reine Handarbeit, dann ersetzen Antriebssysteme die Muskelkraft, später ersetzen Steuerungssysteme die menschliche Koordination von Sinneswahrnehmung und Arbeitsbewegung, und inzwischen ersetzen Computer auch einfache geistige Leistungen. In manchen Produktions- und Verwaltungsabläufen hat die soziotechnische Arbeitsteilung das Stadium der Automatisierung erreicht, wobei Menschen weder ständig noch in einem erzwungenen Rhythmus für die Arbeitsabläufe tätig werden müssen. Ob freilich die „menschenleere Fabrik“ möglich und sinnvoll sein wird, ist keineswegs unumstritten, und auch in der Informationsverarbeitungstechnik ist die Frage offen, bis zu welchem Grade die „künstliche Intelligenz“ der Computer die Menschen wirklich ersetzen kann.

Wie jede Arbeitsteilung ist auch die soziotechnische Arbeitsteilung auf ergänzende Arbeitsverbindung angewiesen. Menschliche und technische Komponenten im soziotechnischen System werden aufeinander abgestimmt und beeinflussen einander wechselseitig. Die Verwendung von technischen Systemen ist an bestimmte Bedingungen geknüpft (z. B. Bedienbarkeit und Bedienungskompetenz, Beherrschbarkeit und Zuverlässigkeit, Ver- und Entsorgungssysteme usw.) und hat bestimmte Folgen (z. B. Veränderung der Bedürfnisse und der psycho-physischen Funktionen des Menschen, Prägung von Handlungsmustern und Sozialbeziehungen usw.).

Ursprünglich haben Arbeitswissenschaft und Industriesoziologie solche Wechselbeziehungen zwischen Mensch und Technik lediglich für die Industriearbeit untersucht. In den letzten Jahrzehnten ist aber die Technisierung verstärkt auch in die alltägliche Lebensführung und in die privaten Haushalte eingedrungen (PKW, Haustechnik, Telefon, Rundfunk und Fernsehen, Foto-, Video- und Computertechnik), sodass die psychosozialen Folgen der Technikverwendung beträchtliche Dimensionen annehmen, die bislang nur unzulänglich erforscht wurden.

Bekannt sind einige allgemeine Entwicklungstendenzen der Gesellschaft, die mit dem Technikeinsatz zusammenhängen. Dazu gehören die anfängliche Zentralisierung und Bevölkerungskonzentration in den Stadt- und Industrierevieren, aber auch die inzwischen durch Verkehrs- und Kommunikationstechnik möglich gewordene neuerliche Dezentralisierung. In der Beschäftigungsstruktur hatte sich der Schwerpunkt zunächst von der Landwirtschaft auf den industriellen Sektor verlagert und verschiebt sich heute zunehmend auf den Dienstleistungssektor. Traditionelle Berufe haben an Bedeutung verloren, und zahlreiche neue Berufe sind entstanden. Darauf reagiert zunächst die Berufsausbildung, allmählich aber auch das allgemeine Bildungssystem. Der nicht zuletzt aufgrund der Technisierung gewachsene Anteil an freier Zeit wird häufig der Technikverwendung, vor allem technischen Hobbyaktivitäten, dem Auto und dem Fernsehkonsum gewidmet.

Technikentstehung

Bei der Entstehung neuer technischer Systeme unterscheidet man verschiedene Phasen:

  1. die Erfindung, die unter Umständen von Erkenntnissen der angewandten Forschung angeregt wird;
  2. die Innovation als technisch-wirtschaftlich erfolgreiche Einführung einer Erfindung; und
  3. die Diffusion als die massenhafte Verbreitung der Innovation.

Von der naturwissenschaftlichen Erkenntnis unterscheidet sich die Erfindung vor allem dadurch, dass sie zugleich mit der technischen Lösungsidee eine Nutzungsmöglichkeit, also eine technisierbare Handlungs- oder Arbeitsfunktion angibt, der die Lösung dienen soll. Da die Erfindung immer einen möglichen Zweck vorwegnimmt, ist Technik grundsätzlich nicht zweckneutral. Auf welche Weise in der Erfindung die Vorstellung von neuartiger Wirklichkeit hervorgebracht wird, kann man bislang nur unzulänglich beschreiben. Erfahrung und Wissen gehören in aller Regel dazu, doch die eigentliche Kreativität, die Fähigkeit, etwas Neues zu konzipieren, das zuvor völlig unbekannt war, bleibt auch dann schwer nachvollziehbar, wenn man sie teils mit intuitiv-unbewussten Assoziationsvorgängen und teils mit systematisch-rationaler Kombinationsarbeit erklärt. Ist eine Erfindung tatsächlich neuartig, brauchbar und dem bekannten Stand der Technik deutlich überlegen, kann darauf ein Patent erteilt werden, das dem Erfinder die Verwertungsrechte sichert.

Ob allerdings eine Erfindung zur Innovation wird, darüber entscheiden, wenn nicht militärische oder andere staatliche Interessen im Spiel sind, vor allem wirtschaftliche Gesichtspunkte. Die anfängliche Lösungsidee muss durch Konstruktionsarbeit in allen Einzelheiten festgelegt werden, in einem Prototyp erprobt und gegebenenfalls verbessert werden. Schließlich sind die Fertigungsanlagen bereitzustellen oder überhaupt erst zu schaffen, und der Markt muss für das neue Produkt erschlossen werden. Diese technischen und unternehmerischen Aktivitäten erfordern beträchtliche finanzielle Vorleistungen, die nur dann aufgebracht werden, wenn die Innovation eine entsprechende Nachfrage auf dem Markt und damit hinreichenden Gewinn verspricht. So wird technische Entwicklung, abgesehen von politischen Impulsen und rechtlichen Regelungen, vor allem wirtschaftlich gesteuert.

Die einzelnen Innovationen verknüpfen sich in ihrer Gesamtheit zu einem Prozess, den man bis vor Kurzem als technischen Fortschritt bezeichnete. Da inzwischen zweifelhaft geworden ist, ob alle technischen Neuerungen immer auch einen wirklichen Fortschritt für die Menschen bedeuten, spricht man heute eher von technischer Entwicklung, technischem Wandel oder von Technikgenese. Dieser Prozess wird von interdisziplinärer Technikforschung zunehmend untersucht, ist aber bisher nur unzureichend erklärt worden. Bis zum letzten Drittel des 20. Jahrhunderts überwog eine Vorstellung, die heute als „technologischer Determinismus“ kritisiert wird, die Annahme nämlich, der technische Wandel folge einer selbständigen Eigengesetzlichkeit. Inzwischen wird die technische Entwicklung als gesellschaftlicher Prozess verstanden, in dem naturale und technische Gegebenheiten, wissenschaftliche Erkenntnisse, technische Erfindungen, menschliche Bedürfnisse, konkurrierende wirtschaftliche Interessen, politische Interventionen und soziokulturelle Orientierungsmuster auf eine bislang kontrovers diskutierte Weise zusammenwirken[10][11].

Attribut

Das Attribut „technisch“ bezeichnet eine Qualität von Substanzen (Gase, Lösungsmittel), die sich zur industriellen Anwendung eignen. Für medizinische oder lebensmitteltechnische Anwendungen sind die Substanzen nicht geeignet, weil sie die Qualitätsnormen nicht einhalten.

Bewertung und Deutung

Ausgelöst durch die Erfahrung zunehmender Umweltschäden, steigender Risiken und wachsender Belastungen der psychosozialen Lebensqualität aufgrund forcierter Innovationsdynamik ist im letzten Drittel des 20. Jahrhunderts eine normative Wende im Technikverständnis eingetreten. Neue Technik wird nicht pauschal als Fluch verdammt, aber auch nicht mehr vorbehaltlos als reiner Segen gefeiert. An technische Neuerungen wird der Anspruch gestellt, dass sie über Funktionsfähigkeit und Wirtschaftlichkeit hinaus übergreifenden Werten und der Lebensqualität Rechnung tragen. Anstelle besonders risikoträchtiger Innovationen werden zunehmend alternative Lösungswege gefordert, die technisch fast immer möglich wären. Mit Programmen einer Ethik der Technik und einer gesellschaftlichen Technikbewertung versucht man auf die technische Entwicklung derart einzuwirken, dass technische Neuerungen von vornherein in Bezug auf Umwelt- und Gesellschaftsqualität optimal gestaltet werden, siehe beispielsweise [12][13].

Die Einsicht in die Gestaltungsoffenheit der technischen Entwicklung, die eher durch sozioökonomische als durch technische Faktoren begrenzt wird, relativiert auch manche Deutungen der Technikphilosophie[14]. Wenn man Technik als Fortsetzung des göttlichen Schöpfungsplanes (Friedrich Dessauer), als übermächtiges Seinsgeschick (Martin Heidegger) oder als Fortsetzung der natürlichen Evolution (Hans Sachsse) begreift, verkennt man, dass die konkrete Phantasie der Menschen die in der Natur angelegten Potentiale gemäß den herrschenden Zweckvorstellungen sehr verschiedenartig ausschöpfen kann (Ernst Bloch). Ganz gleich, ob man die Technik als biologisch notwendige Überlebensstrategie des menschlichen „Mängelwesens“ (Arnold Gehlen) oder als den objektiv überflüssigen Luxus des menschlichen Kulturwesens (José Ortega y Gasset) versteht, wird man doch jeweils im Einzelfall prüfen müssen, welche konkreten Arten von Technik unverzichtbar sind und welche man entbehren könnte.

In ihrer Grundtendenz, menschliche Lebenserhaltung und Lebensentfaltung zu erleichtern, folgt die Technik dem Prinzip der Zweckrationalität (Friedrich von Gottl-Ottlilienfeld), die sich freilich manchmal als ökonomische Rationalität verselbständigt und die Komplexität der Folgen vernachlässigt. Dass Technik auch als Ausfluss eines elementaren menschlichen Gestaltungswillens gedeutet werden kann, als Vergegenständlichung des Subjekts in den Produkten der eigenen Arbeit (Karl Marx), als Vehikel innerweltlich-heilsgeschichtlicher Selbsterlösung (Donald Brinkmann[15]) oder als Medium des „Willens zur Macht“ (Friedrich Nietzsche, Oswald Spengler), verweist auf irrationale Tiefenstrukturen, die von technologischer Aufklärung berücksichtigt und bewältigt werden müssen.

Siehe auch

 Portal: Technik – Übersicht zu Wikipedia-Inhalten zum Thema Technik

  • Technischer Defekt

Literatur

Sachwissen

  • Otto Lueger (Hrsg.): Lexikon der gesamten Technik, 2. Aufl. 1904 - 1920, DVD-ROM-Ausgabe, Neusatz und Faksimile, Directmedia Publishing Berlin 2005, ISBN 3-89853-516-9 (in weiten Teilen nur noch technikgeschichtlich von Interesse)
  • VDI-Richtlinie 3780: Technikbewertung – Begriffe und Grundlagen. 2000.
  • Duden Basiswissen Technik. Mannheim 2001.
  • Brockhaus Naturwissenschaft und Technik. 3 Bde. Mannheim/Heidelberg 2003
  • Hütte – das Ingenieurwissen. Berlin usw. 2008.
  • Wie funktioniert das? Technik. Mannheim 2010.

Orientierungswissen

  •  Karl Marx: Das Kapital. Bd. 1: Der Produktionsprozess des Kapitals. 8. Aufl. Auflage. Dietz, Berlin 1959 (Erstausgabe 1867, besonders Kap. 13).
  •  Klaus Tuchel: Herausforderung der Technik: gesellschaftliche Voraussetzungen und Wirkungen der technischen Entwicklung. Schünemann, Bremen 1967.
  •  Hans Lenk, Simon Moser (Hrsg.): Techne, Technik, Technologie: philosophische Perspektiven. Verl. Dokumentation, Pullach bei München 1973, ISBN 3-7940-2622-5.
  •  Siegfried Wollgast, Gerhard Banse: Philosophie und Technik: zur Geschichte und Kritik, zu den Voraussetzungen und Funktionen bürgerlicher "Technikphilosophie". VEB Dt. Verl. d. Wissenschaften, Berlin 1979.
  • Armin Hermann, Wilhelm Dettmering, Charlotte Schönbeck (Hrsg.): Technik und Kultur. 10 Bände und Registerband, VDI, Düsseldorf 1990ff.
  •  Friedrich Rapp: Die Dynamik der modernen Welt : eine Einführung in die Technikphilosophie. 1. Aufl. Auflage. Junius, Hamburg 1994, ISBN 3-88506-244-5.
  •  Günter Spur: Technologie und Management: zum Selbstverständnis der Technikwissenschaften. Hanser, München 1998, ISBN 3-446-21033-4.
  •  Günter Ropohl: Technologische Aufklärung: Beiträge zur Technikphilosophie. 2. Auflage. Suhrkamp, Frankfurt am Main 1999, ISBN 3-518-28571-8.
  •  Christoph Hubig, Alois Huning, Günter Ropohl (Hrsg.): Nachdenken über Technik : die Klassiker der Technikphilosophie. Ed. Sigma, Berlin 2000, ISBN 3-89404-952-9.
  •  Johannes Rohbeck: Technik - Kultur - Geschichte: eine Rehabilitierung der Geschichtsphilosophie. 1. Auflage. Suhrkamp, Frankfurt am Main 2000, ISBN 3-518-29062-2.
  •  Gerhard Banse, Armin Grunwald, Wolfgang König, Günter Ropohl (Hrsg.): Erkennen und Gestalten: eine Theorie der Technikwissenschaften. Ed. Sigma, Berlin 2006, ISBN 3-89404-538-8.
  •  Johannes Weyer: Techniksoziologie: Genese, Gestaltung und Steuerung sozio-technischer Systeme. Juventa-Verl., Weinheim/München 2008, ISBN 978-3-7799-1485-3.
  • Günter Ropohl: Allgemeine Technologie – eine Systemtheorie der Technik. 3. Aufl. Karlsruhe 2009, ISBN 978-3-86644-374-7 (PDF-Datei online, abgerufen am 11. Januar 2011).
  •  Wolfgang König: Technikgeschichte. Steiner, Stuttgart 2009, ISBN 978-3-515-09423-8.
  • Gerhard Banse, Armin Grunwald (Hrsg.): Technik und Kultur. Karlsruhe 2010, ISBN 978-3-86644-467-6 (PDF-Datei online, abgerufen am 11. Januar 2011).

Weblinks

Wiktionary Wiktionary: Technik – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Wikiquote: Technik – Zitate
Wikibooks Wikibooks: Wikibücher zum Thema Technik – Lern- und Lehrmaterialien

Einzelnachweise

  1. VDI-Richtlinien. VDI 3780:Technikbewertung. Begriffe und Grundlagen, September 2000, S.2
  2. z.B. Günter Ropohl: Allgemeine Technologie, Karlsruhe 2009, S. 31f
  3. Brockhaus 2003, Bd. 3, S. 1954; ebenso in anderen Nachschlagewerken von Brockhaus und Meyer
  4. W. Brian Arthur, The Nature of Technology, New York etc.: Free Peess 2009, S. 18
  5. Z.B. Ersetzung von Mechanik durch chemische Prozesse, Fluidsysteme oder Elektronik, sog. "Redomaining" (W. Arthur Brian, S. 73
  6. W. Brian Arthur, The Nature of Technology", New York etc.: Free Press 2009, S. 56
  7. Niklas Luhmann, Soziologie des Risikos, Berlin 1991, S. 97
  8.  Gerhard Banse, Armin Grunwald, Wolfgang König, Günter Ropohl (Hrsg.): Erkennen und Gestalten: eine Theorie der Technikwissenschaften. Ed. Sigma, Berlin 2006, ISBN 3-89404-538-8.
  9. Zuerst Johannes Müller: Grundlagen der Systematischen Heuristik, Dietz Verlag, Berlin 1970, S. 59. Weitere Belege und Erläuterungen zur Einteilung bei Ropohl 2009, S. 129ff. Zur allgemeinen Verbreitung z.B. Duden 2001 und Spur 1998.
  10.  Johannes Weyer: Techniksoziologie: Genese, Gestaltung und Steuerung sozio-technischer Systeme. Juventa-Verl., Weinheim/München 2008, ISBN 978-3-7799-1485-3.
  11. König 2009
  12. Armin Grunwald: Technikfolgenabschätzung - eine Einführung. Ed. Sigma, Berlin 2010, ISBN 978-3894049508
  13. Günter Ropohl: Ethik und Technikbewertung. Suhrkamp, Frankfurt/M 1996, ISBN=3-518-28841-5
  14. vgl.  Christoph Hubig, Alois Huning, Günter Ropohl (Hrsg.): Nachdenken über Technik : die Klassiker der Technikphilosophie. Ed. Sigma, Berlin 2000, ISBN 3-89404-952-9.
  15. Donald Brinkmann: Mensch und Technik, Franke, Bern 1946, z.B. 105ff et passim.

News mit dem Thema Technik

15.06.2022
Quantenphysik
Quantenelektrodynamik 100-fach genauerer getestet
Mit einer neu entwickelten Technik haben Wissenschaftler den sehr geringen Unterschied der magnetischen Eigenschaften zweier Isotope von hochgeladenem Neon in einer Ionenfalle mit bisher unzugänglicher Genauigkeit gemessen.
13.05.2022
Quantenoptik
Mehr Effizienz für optische Quantengatter
Quantencomputer sollen künftig nicht nur besonders knifflige Rechenaufgaben lösen, sondern sich auch zu einem Netzwerk für den sicheren Austausch von Daten verbinden lassen.
09.05.2022
Festkörperphysik | Optik
Eine neue Methode zur Erforschung der Nanowelt
Wissenschaftler präsentieren einen großen Fortschritt bei der Charakterisierung von Nanopartikeln.
13.12.2021
Sterne | Relativitätstheorie
Einstein erneut erfolgreich
Ein internationales Forscherteam hat in einem 16 Jahre dauernden Experiment Einsteins allgemeine Relativitätstheorie mit einigen der bisher rigidesten Tests überprüft.
01.12.2021
Quantenoptik
Holografie trifft Frequenzkämme
Jeder hat schon einmal Hologramme gesehen, auf einer Banknote, einem Reisepass oder bei Star Wars.
23.09.2021
Teilchenphysik
Den Geheimnissen eines exotischen Kerns auf der Spur
Berechnungen des exotischen, experimentell schwer zugänglichen Kerns Zinn-100 mit neuesten ab-initio theoretischen Methoden liefern verlässliche Ergebnisse.
11.05.2021
Physikdidaktik | Quantenphysik
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat.
22.10.2020
Optik | Teilchenphysik | Thermodynamik
Auflösungsweltrekord in der Kryo-Elektronenmikroskopie
Eine entscheidende Auflösungsgrenze in der Kryo-Elektronenmikroskopie ist geknackt.
21.10.2020
Milchstraße | Teilchenphysik
Atomarer Wasserstoff als archäologischer Nachweis für die Geschichte der Milchstraße
Eine Gruppe von Astronomen unter der Leitung von Juan Soler vom MPIA hat ein komplexes Netzwerk aus Filamenten aus atomarem Wasserstoffgas gefunden, das die Milchstraße durchdringt.
14.09.2020
Astrophysik | Physikdidaktik
Herschel, Uranus und seine Monde
Vor über 230 Jahren entdeckte der Astronom Wilhelm Herschel den Planeten Uranus und zwei seiner Monde.
04.08.2020
Sonnensysteme | Exoplaneten
Radioastronomie: extrasolares Planetensystem um einen Hauptreihenstern
Einem internationalen Team von Astronomen ist es gelungen, einen saturnähnlichen extrasolaren Planeten um einen massearmen kühlen Stern nachzuweisen, und zwar anhand der systematischen Bewegung („wobbling“) des Sterns, hervorgerufen durch die Gravitation des Planeten.
20.07.2020
Astrophysik | Elektrodynamik
Gamma-Teleskope messen Durchmesser ferner Sterne
Ein Forscherteam hat spezialisierte Gammastrahlen-Teleskope dank einer wiederbelebten Technik zu einem großen virtuellen Teleskop zusammengeschaltet und damit die Durchmesser hunderte Lichtjahre entfernter Sterne gemessen.
13.07.2020
Quantenoptik | Teilchenphysik
Konzept für neue Technik zur Untersuchung superschwerer Elemente vorgestellt
Verschmelzung physikalischer und chemischer Methoden für die optische Spektroskopie superschwerer Elemente.
09.06.2020
Elektrodynamik | Teilchenphysik
Momentaufnahmen von explodierendem Sauerstoff
Neue Experimentiertechnik mit Reaktionsmikroskop der Goethe-Universität ermöglicht das „Röntgen“ einzelner Moleküle.
07.05.2020
Festkörperphysik
Neue Messmethode hilft, Physik der Hochtemperatur-Supraleitung zu verstehen
Von einer nachhaltigen Energieversorgung bis hin zu Quantencomputern: Hochtemperatur-Supraleiter könnten unsere heutige Technik revolutionieren.
06.04.2020
Planeten
Virtueller Roboterschwarm auf dem Mars
Wissenschaftler des Technologie-Zentrums Informatik und Informationstechnik (TZI) der Universität Bremen haben 40 Quadratkilometer Marslandschaft in der virtuellen Realität rekonstruiert.
06.04.2020
Optik | Biophysik
Smartphones schnell und sicher mit Licht desinfizieren
Forscherinnen und Forscher am Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB, Institutsteil Angewandte Systemtechnik-AST haben eine innovative Lösung zum Desinfizieren von Smartphones entwickelt.
14.02.2020
Mit neuer Technik im extrem-ultravioletten Lichtbereich beobachten Forschende Quanteninterferenzen in Echtzeit
Einem Team um Prof.
05.12.2019
Neue Klimadaten dank kompaktem Alexandritlaser
Höhere Atmosphärenschichten werden für Klimaforscher immer interessanter.
20.11.2019
Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern
Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist.
26.09.2019
Rätselhafter Radioausbruch erhellt den ruhigen Halo einer Galaxie
Astronomen haben mit dem Very Large Telescope der ESO zum ersten Mal beobachtet, dass ein schneller Radioausbruch durch einen galaktischen Halo streifte.
22.08.2019
Starke Magnetfelder mit Neutronen sichtbar machen
Forschende des Paul Scherrer Instituts PSI haben eine neue Methode entwickelt, mit der man starke Magnetfelder exakt vermessen kann.
22.08.2019
Erstmals entschlüsselt: Wie Licht 
chemische Reaktionen in Gang hält
Um Menschen weltweit klimaverträglich mit Energie zu versorgen, gilt Wasserstoff als Brennstoff der Zukunft.
26.04.2019
Biegsame Schaltkreise für den 3D-Druck
Eine Forschungskooperation von Universität Hamburg und DESY hat ein 3D-Druck-taugliches Verfahren entwickelt, mit dem sich transparente und mechanisch flexible elektronische Schaltkreise produzieren lassen.
24.04.2019
Münchner Lichtquanten-Destillerie
Garchinger Physiker entwickeln eine Technik, um reine einzelne Photonen zu extrahieren.
28.03.2019
Die Datenspeicher von morgen: Mit neuer Technik molekulare Magnete wie in Zeitlupe erforschen
Beim Speichern von Daten stoßen herkömmliche Techniken zunehmend an ihre Grenzen.
22.03.2019
Die Zähmung der Lichtschraube
Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen.
01.03.2019
Ausgefeilte 3D-Messtechnik ermöglicht gestenbasierte Mensch-Maschine-Interaktion in Echtzeit
Mensch und Maschine werden einander bei der Arbeit zunehmend unterstützen.
23.01.2019
Quantenphysik | Teilchenphysik
Studie: Zusammenstoß einzelner Atome führt zu zweifacher Änderung des Drehimpulses
Dank neuer Technik ist es möglich, einzelne Atome festzuhalten, gezielt zu bewegen oder ihren Zustand zu verändern.
21.12.2018
Teilchenphysik
Beschreibung rotierender Moleküle leicht gemacht
Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in Flüssigkeiten.
17.12.2018
Teilchenphysik | Thermodynamik
Beim Phasenübergang benutzen die Elektronen den Zebrastreifen
Dass Materie in drei verschiedenen Aggregatzuständen oder Phasen vorkommt (fest, flüssig und gasförmig), wissen wir aus der Schulzeit.
17.12.2018
Quantenoptik
Neue Laserstrahlen für die Glasbearbeitung – geformt nach Kundenwunsch
Glas mit beliebigen Konturen trennen?
23.11.2018
Quantenoptik | Teilchenphysik
Auf dem Weg zum Beschleuniger auf dem Mikrochip
Elektrotechniker am Fachgebiet Beschleunigerphysik der TU Darmstadt entwickeln ein Konzept eines lasergetriebenen Elektronenbeschleunigers, der so klein ist, dass er auf einem Siliziumchip hergestellt werden kann und kostengünstig und vielseitig einsetzbar ist.
23.10.2018
Quantenphysik
Quantenkommunikation auf Glasfaserbasis - Interferenz mit Lichtquanten unabhängiger Quellen
Wissenschaftler arbeiten weltweit an der absolut abhörsicheren Kommunikation – der sogenannten Quantenkommunikation.
04.10.2018
Festkörperphysik
Molekulare Multiwerkzeuge
Die Funktionalisierung von Oberflächen mit verschiedenen physikalischen oder chemischen Eigenschaften ist eine Anforderung in vielen Anwendungsgebieten.
03.07.2018
Akustik | Wellenlehre
Wie man Schallwellen durchs Labyrinth lenkt
Eine Wellen-Manipulationstechnik der TU Wien wurde nun erstmal im Experiment getestet: Schallwellen lassen sich damit mühelos durch komplizierte Strukturen leiten.
27.06.2018
Quantenoptik | Teilchenphysik
Nobelium im Laserlicht
Die Größe und Form künstlich hergestellter Atomkerne mit mehr als 100 Protonen war experimentell bisher nicht direkt zugänglich.
26.06.2018
Quantenoptik | Thermodynamik
Neue Form von Chaos entdeckt
Die Entdeckung eines neuen Typs von Chaos durch Chemnitzer Physiker findet weltweite Beachtung – Potentielle Anwendung für Kommunikationstechnik, Kryptographie und Datenverarbeitung.
26.06.2018
Festkörperphysik | Quantenoptik
Asymmetrische Nano-Antennen liefern Femtosekunden-Pulse für Optoelektronik
Einem Team unter Leitung der TUM-Physiker Alexander Holleitner und Reinhard Kienberger ist es erstmals gelungen, mit Hilfe nur wenige Nanometer großer Metallantennen ultrakurze, elektrische Pulse auf einem Chip zu erzeugen, diese dann einige Millimeter weiter wieder kontrolliert auszulesen.
25.06.2018
Exoplaneten | Astrophysik
Wo sich Medizintechnik und Astrophysik treffen
An der Universität Bern haben Forschende aus der Astrophysik und der Medizintechnik gemeinsam eine neue Methode entwickelt, mit der sie Planeten ausserhalb unseres Sonnensystems untersuchen.
13.06.2018
Sterne | Exoplaneten
ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern
Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296 befinden.
01.06.2018
Elektrodynamik | Festkörperphysik
Neuartige Isolatoren mit leitenden Kanten
Physiker der UZH erforschen eine neue Materialklasse, die sogenannten topologischen Iso-latoren höherer Ordnung.
01.06.2018
Biophysik
Neue Technik fürs Enzym-Design
Mit einer neuen Methode haben Wissenschaftler der Universität Würzburg das Enzym Levansucrase chemisch umgebaut.
22.05.2018
Elektrodynamik | Festkörperphysik | Quantenoptik
Faserlaser mit einstellbarer Wellenlänge
Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie.
17.04.2018
Quantenoptik
Laserbasiertes Röntgenbild im Eiltempo
Garchinger Laserphysiker haben mit Hilfe einer laserbasierten Röntgentechnik erstmals eine Knochenprobe innerhalb weniger Minuten rekonstruiert.
16.04.2018
Festkörperphysik
Echtzeit Schichtdickenmessung mit Terahertz
Terahertz ist eine Schlüsseltechnik für die zerstörungsfreie Werkstoffprüfung.
03.08.2017
Astrophysik | Klassische Mechanik
Havarierte Satelliten: Eigenbewegung zuverlässig bestimmen und prognostizieren
Unkontrollierte Objekte im Erdorbit bergen massive Risiken für funktionstüchtige Satelliten und die gesamte Raumfahrt.
11.07.2017
Festkörperphysik
Wie ein Material zum Supraleiter wird: Phänomen der Elektronenpaare beobachtet
Hochtemperatur-Supraleiter sind Materialien, die bei tiefen Temperaturen ihren elektrischen Widerstand verlieren und damit Strom ohne Verlust transportieren können - und das im Gegensatz zu konventionellen Supraleitern bereits bei vergleichsweise hohen Temperaturen.
11.07.2017
Klassische Mechanik | Quantenphysik
Klassische Mechanik hilft Quantencomputer zu steuern: Mit dem Tennisschläger in die Quantenwelt
Quantentechnik gilt als Zukunftstechnologie: kleiner, schneller und leistungsfähiger als herkömmliche Elektronik.