Dieser Artikel behandelt feinst verteilte feste Partikel. Zu sonstigen Bedeutungen siehe Staub (Begriffsklärung).
Hausstaub auf einer Tastatur
Ein ICE sandet bei 300 km/h und hinterlässt eine Staubwolke

Staub (Mehrzahl Stäube, bei unterschiedlichen Sorten) ist die Sammelbezeichnung für feinste feste Teilchen (Partikel), die in Gasen, insbesondere in der Luft aufgewirbelt lange Zeit schweben können. Staub ist definitionsgemäß Bestandteil des Schwebstaubes (Gesamtstaub, TSP (total suspended particulates)), der wiederum zusätzlich zum Staub unter anderem auch noch den Rauch und Rußpartikel umfasst.

Je nach Notwendigkeit wird Staub (eigentlich der Schwebstaub) nach der Partikelgröße oder nach der Staubart unterteilt. Staubteilchen können aus organischen (Blütenpollen, Bakterien, Pilzsporen) oder anorganischen Materialien (Gesteinsstaub, Mineralfasern) bestehen. Eine allgegenwärtige Form des Staubes, der aus organischem und anorganischem Material besteht, ist Hausstaub.

Wortbildung Stäube

Abbildung 1: Definitionen und Einteilung von Staub. Es gibt bezüglich der Partikelgröße unterschiedliche Definitionen von Fein- und Grobstaub. Teilweise wird erst ab einem Partikeldurchmesser kleiner 2,5 µm von Feinstaub gesprochen; dementsprechend zählen dann Partikel mit einem Durchmesser größer 2,5 µm bereits zum Grobstaub

Grammatikalisch hat Staub – als Singularetantum – keine Pluralform. Bei der oben angeführten Mehrzahl Stäube handelt es sich um den sogenannten Sortenplural, der vor allem für den technischen Sprachgebrauch geprägt wurde. Allerdings gibt es Formen wie „Stäubchen“, „stäuben“ („zerstieben“) oder „Stäubling“ (ein Pilz).[1]

Das Wort bezeichnet im technischen Sinne Staubklassen, also anteilige Gruppen am Gesamtstaub, die nach gewissen Kriterien zusammengefasst werden, etwa als „organische und anorganische Stäube“ oder „verschiedene lungengängige Stäube < 5 µm“. Durch Verwendung im Umweltschutz dringt sie langsam in die Alltagssprache ein.

Grob- und Feinstaub

Aus gesundheitlicher Sicht ist neben dem Schadstoffgehalt des Staubes die Größe der Staubpartikel der entscheidende Parameter. Partikel mit einem Durchmesser größer 10 µm (1 Mikrometer ist ein tausendstel Millimeter), der sog. Grobstaub, bleibt mehr oder minder gut an den Nasenhärchen oder den Schleimhäuten des Nasen-Rachenraums hängen. Kleinere und kleinste Staubpartikel (Feinstaub, ultrafeine Partikel) können über die Luftröhre und die Bronchien bis tief in die Lunge vordringen. Daher wird der Feinstaub auch als inhalierbarer bzw. als lungengängiger (alveolengängiger) Feinstaub bezeichnet (s. Abb. 1 für jeweilige Partikelgröße).

Allgemein anerkannte Bezeichnungen für Feinstaub existieren allerdings nicht. In der Regel wird unter Feinstaub Staub mit einer Partikelgröße kleiner 10 µm (PM10) verstanden. Die Staubfraktion mit einer Partikelgröße kleiner 0,1 µm wird als ultrafeine Partikel bezeichnet.

Entstehung von Staub

Abbildung 2: Wichtige sekundäre Prozesse der atmosphärischen Partikelbildung und die geschätzte jährliche Bildungsmenge (nach Andreae 1994[2]) in Millionen Tonnen für verschiedene Partikel

Staub kann prinzipiell durch verschiedene Prozesse entstehen:

  1. die mechanische Bearbeitung von Feststoffen (Zerkleinern, Oberflächenbearbeitung, Abrieb)
  2. physikalische Einflüsse auf Feststoffe (wie bei der Erosion durch Wind und Wetter)
  3. durch chemische Reaktionen in der Atmosphäre unter Partikelbildung (gas-to-particle conversion (sogenannte sekundäre Aerosole)) (andere chemische Reaktionen führen zur Bildung von Rauch; Rauch und Staub unterscheiden sich prinzipiell nur durch die Bildungsprozesse, beide bestehen aber aus feinst verteilten festen Teilchen (dazu Abbildung 1)
  4. durch Aufwirbelung von Partikeln (entsprechend der Definition von Staub)

Die staubbildenden Prozesse können sowohl natürlichen Ursprungs als auch durch den Menschen verursacht sein und werden in primäre und sekundäre Prozesse unterschieden. Bei einem primären Prozess werden die Partikel direkt durch den Prozess erzeugt. Ein primärer anthropogener Prozess ist die Kohleverbrennung in einem Kraftwerk; das Kraftwerk wird dann als primäre Quelle bezeichnet. Ein primärer natürlicher Prozess ist die Verwitterung von Gestein. Beim sekundären Prozess entstehen die Partikel aus den Reaktionen bestimmter Gase (Pkt. 3 oben), wobei sich die entstehenden festen Reaktionsprodukte leicht an bereits vorhandene Partikel (sog. Kondensationskerne) anlagern können.

Staubsturm in Texas

Wichtige natürliche (Schweb)staubquellen sind:

  • Bodenerosion
  • Vulkanismus
  • Meere (sea spray)
  • Sandstürme (Sahara-Staub in Mitteleuropa, Wüste von Nevada)
  • Pollenflug
  • Wald- und Buschbrände mit natürlicher Ursache (Blitzschlag)

Wichtige anthropogene (Schweb)staubquellen sind:

  • Industrielle Prozesse
  • Energiegewinnung (Kraft- und Fernheizwerke)
  • Verkehr
  • Landwirtschaft
  • Bautätigkeit
  • Haushalte
  • Wald- und Buschbrände (auch durch Brandrodung)

Die Beiträge der einzelnen Quellen zur Staubbelastung (oder genauer zur Schwebstaubbelastung, da man u. a. auch den Rauch und Ruß als Partikelquellen berücksichtigen muss) sind unterschiedlich und hängen im Wesentlichen von der lokalen Situation ab. In einem ländlichen Gebiet kann der Gesteinsstaub (Sand, Löss) erheblich zur Staubbelastung beitragen, wohingegen in einer viel befahrenen Straße die Staubbelastung aus einem Cocktail von Abriebmaterial (Reifen, Bremsbeläge, Straßenbelag), Schwermetallpartikeln, Ruß, etc. bestehen wird. Das Umweltbundesamt[3] schätzt, dass der Beitrag zur innerörtlichen Staubbelastung im Wesentlichen drei Quellen zuzuordnen ist:

1) etwa 50 % aus der Emission (des Verbrennungsmotors, Anm.) von Dieselfahrzeugen (LKW, Kleinlaster, Busse, PKW)
2) etwa 25 % aus dem, was der (motorisierte) Verkehr aufwirbelt (Abrieb von Bremsen, Reifen, Straßenbelag)
3) etwa 25 % durch ferntransportierte Partikel, das heißt Partikel, die aus weiter entfernt liegenden Quellen stammen.

Die Tabellen 1 und 2 fassen Emissionsmengen und Anteile wichtiger Quellen an der Staubentstehung zusammen.

Tabelle 1 Geschätzte primäre Partikelemissionen aus natürlichen und anthropogenen Quellen im Jahr 2000 (Angaben in Tg/a = Teragramm/annum = Megatonnen/Jahr)(Quelle:[4] und [5] (für vulkanische Aktivität)); für die Bildung von sekundären Partikeln siehe Abbildung 2)

Staubart, -quelle Partikelgröße
[µm]
Nördliche Hemisphäre [Tg/Jahr] Südliche Hemisphäre [Tg/Jahr] Global [Tg/Jahr]
POM*, Wald-/Buschbrände 0–2 28 26 54
POM*, fossile Brennstoffe 0–2 28 0,4 28
POM*, Pflanzenzerfall > 1 56
Ruß, Wald-/Buschbrände 0–2 2,9 2,7 5,7
Ruß, fossile Brennstoffe 0–2 6,5 0,1 6,6
Asche und Staub (Vulkane) < 5 85
Industrielle Prozesse > 1 100
Seesalz 0–16 1.440 1.900 3.340
Gesteinsstaub 0–20 1.800 349 2.150
  • POM: Particulate Organic Matter (partikelförmiges organisches Material)

Von den in Tabelle 1 genannten Partikelquellen dominieren Seesalz (sea spray) und Gesteinsstaub gegenüber den anderen Quellen. Ein großer Anteil der Seesalz- und der Gesteinsstaubpartikel können aber zum Grobstaub gerechnet werden und unterliegen daher (in der Regel) nicht dem atmosphärischen Ferntransport, d. h. sie werden in relativer Nähe zu ihrer Quelle wieder deponiert (aus der Luft ausgeschieden).

Von gesundheitlicher Relevanz sind die kleinen Partikel (Feinstaub) und Partikel, die mit Schwermetallen und organischen Schadstoffen beladen sind (Asche, Ruß), die häufig aus anthropogenen Quellen stammen.

Tabelle 2

Anteile verschiedener Quellen an der Staubbelastung in Deutschland[6], Österreich[7] und der Schweiz[8] für die in Klammern genannten Jahre; k.A.: keine Angabe

Partikelquelle Gesamtstaub Feinstaub
Deutschland (2001) Österreich (2002) Österreich (2002) Schweiz (1997)
Industrie 40,5 % 41 % 39 % 29 %
Straßenverkehr 14 % 23 % 20 % 50 %
Landwirtschaft k.A. 20 % 15 % 13 %
Haushalte 5,3 % k.A. k.A. 4 %
andere Quellen 40,2 % 16 % 26 % 4 %
Gesamtemission 247.000 to 80.000 to 47.000 to 32.000 to

Ein Vergleich der in Tabelle 2 genannten Werte ist nur bedingt möglich, da teilweise die Quellen unterschiedlich betrachtet werden. So wurde beispielsweise bei Abschätzung der Staubemission durch den Straßenverkehr in Österreich die Aufwirbelung nicht berücksichtigt, wohingegen sie bei der Angabe für die Schweiz berücksichtigt worden ist. Hier macht die Aufwirbelung mit 30 % (9.660 to) über die Hälfte des Beitrages des Straßenverkehrs zur Feinstaub-Emission aus.

Grenzwerte und Trends

Wie für andere Luftschadstoffe auch, gibt es in den meisten industrialisierten Ländern Grenzwerte für die anthropogene Staubemission. Aufgrund der vielen Staubarten und –quellen gibt es eine Vielzahl von gesetzlichen Regelungen, von denen ein Teil in Tabelle 3 zusammengestellt ist.

Tabelle 3

Grenzwerte für ausgewählte Staubarten; die jeweilige Vorschrift findet sich in der zitierten Literatur weiter unten

Staubart Regelung Grenzwert(e) Bemerkungen
Gesamtschwebstaub RL 89/427/EWG[9] 150 µg/m³ durchschnittl. Tagesmittelwert (gültig bis 31. Dezember 2004)
Gesamtschwebstaub RL 89/427/EWG[9] 300 µg/m³ darf max. an 18 Tagen (5 %) im Jahr überschritten werden (gültig bis 31. Dezember 2004)
Atembarer Staub (PM10) RL 1999/30/EG[10] 40 µg/m³ Jahresmittelwert (gültig ab 1. Januar 2005)
Atembarer Staub (PM10) RL 1999/30/EG[10] 50 µg/m³ Tagesmittelwert, max. 35 Überschreitungen im Jahr (gültig ab 1. Januar 2005)
Staub, einatembare Fraktion TRGS 900[11] 10 mg/m³ Arbeitsplatzgrenzwert
Staub, alveolengängige Fraktion TRGS 900[11] 3 mg/m³ Arbeitsplatzgrenzwert
Faserstaub TRGS 900[11] 250.000 Fasern/m³ Fasern (Länge > 5, D < 3 µm, L:D=3:1), (gültig bis 31. Dezember 2004)
Faserstaub TRGS 900[11] 500.000 Fasern/m³ bestimmte Bereiche mit Keramikfasern (gültig bis 31. Dezember 2004)
Holzstaub TRGS 553[12] 2 mg/m³ über 2 mg/m³ ist Atemschutz erforderlich
Mehlstaub TRGS 900[11] 4 mg/m³ Empfehlung

Während die Einhaltung der gesetzlichen Grenzwerte bei stationären Quellen (zum Beispiel Industrieanlagen) in der Regel kein Problem darstellt, ist die Einhaltung der seit dem 1. Januar 2005 EU-weit geltenden neuen Grenzwerte für Feinstaub (PM10) insbesondere in Gebieten mit hohem Verkehrsaufkommen oftmals schwierig bzw. unmöglich. Zwar können durch einen Partikelfilter die Rußemissionen von Dieselmotoren deutlich reduziert werden, der aufgewirbelte Straßenstaub, der Abrieb von Reifen und Bremsbelägen lässt sich aber prinzipiell nicht vermeiden. In Deutschland werden jährlich etwa 60.000 Tonnen Partikel (hauptsächlich kleiner 10 µm und damit Feinstaub) durch den Privatverkehr freigesetzt. Für die Schweiz wurde für das Jahr 1997 für den Straßenverkehr eine Feinstaubemission von 1.610 to durch Bremsenabrieb und 2.415 to durch Reifenabrieb ermittelt. Die ermittelte Partikelemission aus dem Abgasen beträgt ebenfalls 2.415 to[8]. In Österreich sind etwa zwei Drittel der verkehrsbedingten Gesamtstaubemission durch Reifen- und Bremsabrieb bedingt[7]. Die Entwicklung der anthropogenen Staubemissionen in Deutschland und Österreich ist unterschiedlich. Während in Deutschland die anthropogen bedingten Staubemission im Zeitraum 1990 bis 2001 um fast 87 % von 1.858.000 to auf 247.000 to gesunken sind[6], stieg in Österreich die anthropogen bedingte Staubemission von ca. 72.000 to im Jahr 1990 auf annähernd 80.000 to im Jahr 2002 an[7]. Die österreichischen PM10-Emissionen sind seit 1990 um 5 % auf etwa 47.000 to im Jahr 2002 angestiegen[7].

Staubarten

In der Abbildung 1 (siehe oben) sind bereits verschiedene wichtige Staubarten aufgeführt.

Der Hausstaub ist allgegenwärtig und stellt eine Mischung aus anorganischen und organischen Materialien dar. Zusammenballungen von Hausstaubpartikeln zu größeren Gebilden werden auch als „Wollmäuse“ bezeichnet. Eine Sonderform des Hausstaubes sind die sog. Schwarzen Wohnungen (Schwarzstaub, magic dust), deren Ursache noch nicht eindeutig geklärt ist.

Fasern können bis in die Lunge gelangen und dort zu Schädigungen führen (zum Beispiel Asbestose, verursacht durch Asbestfasern).

Pollen tragen zur natürlichen Staubbelastung insbesondere im Frühjahr bei. Menschen, die allergisch auf Pollen reagieren (Heuschnupfen), leiden unter dieser natürlichen Staubbelastung besonders.

Insbesondere bei Sandstürmen werden riesige Partikelmengen in die Atmosphäre geschleudert und teilweise tausende Kilometer vom Quellgebiet entfernt wieder auf der Erde deponiert.

Wirkung von Staub

Staub kann verschiedene Einflüsse auf den Menschen und die Umwelt haben. Im Gegensatz zum Grobstaub kann Feinstaub über die Atemwege bis in die Lunge gelangen. Die toxikologische Wirkung beruht vor allem auf den Gehalt an Stoffen wie Blei, Vanadium, Beryllium und Quecksilber, von denen einige die Entstehung von Krebserkrankungen fördern. Zudem lagern sich an der Oberfläche der winzigen Staubteilchen andere Schadstoffe wie Kohlenwasserstoffe, Schwefel- oder Stickstoffverbindungen an, so, dass deren Wirkung bei gleichzeitiger Anwesenheit von Staub verstärkt wird. Allgemein erzeugt Staub eine Erhöhung der Zahl von Erkrankungen der Atmungsorgane. So können Bronchitis, Asthma oder Emphysem (durch gewöhnlichen Staub, Eisen- oder Kohlenstaub) oder eine Lungenfibrose (Silikose durch Quarzstaub, und Asbestose durch Asbeststaub) oder Lungenkrebs (durch Quarz- und Asbestestaub) oder Nasenkrebs (durch gewisse Holzstaubarten) entstehen. Neben gesundheitsschädlichen Aspekten ist der Einfluss von Partikeln auf das Klima ein wichtiger Aspekt aktueller Forschung.

Inerte Stäube sind Partikel einer Substanz, bei der keine schädigende Wirkung auf den menschlichen Körper bekannt ist. Dazu gehören beispielsweise Stärke und Zellulose.

Bei fotografischen Aufnahmen mit Blitzlicht können durch Staub sogenannte Geisterflecke hervorgerufen werden.

Gemische aus Staub und Luft sind in gewissen Fällen explosionsfähig, mehr darüber im Artikel Staubexplosion.

Beseitigung von Staub

Filterung

Die betroffene Luft – etwa die Innenraumluft in einem Wohnraum – wird kontinuierlich durch einen Filter bewegt. Dabei wird der Staub je nach Filtertyp von der Luft getrennt. Nachteile: Lüftergeräusch, regelmäßiger Filterwechsel, Staub wird nicht unmittelbar beseitigt, sondern kann weiterhin Quelle von Schadstoffen sein.

Ionisierung

Durch einen Ionisator wird Luft ionisiert, so dass sich Staubpartikel an einer geerdeten Fläche ablagern.

Verbrennung

Die betroffene Luft wird kontinuierlich durch einen elektrisch erhitzten (vorzugsweise 300 °C) Keramikkern mit Kanälen bewegt. Organische Staubbestandteile werden hierbei verbrannt, also zu CO2 oxidiert. Die Luftzirkulation wird thermisch vorangetrieben. Vorteile: kein Lüftergeräusch, kein Filterwechsel – da keine Filter vorhanden, Staub wird durch Erhitzung vernichtet, Energie-/Stromaufnahme gering: ca. 50 W für Zimmer mit 30 m².


Staub im weiteren Sinn

Auch im übertragenen Sinn gibt es „Staub“:

  • Den so genannten Cantor-Staub in der Mathematik – auch Cantor-Menge oder Wischmenge genannt,
  • der „aufgewirbelte Staub“ durch ein unbedachtes Wort, eine unvorsichtige (manchmal auch geplante) Mitteilung oder Aktion usw.
  • der „Staub von gestern“ und der „Staub, der sich über eine Sache legt“, wenn sich die Situation beruhigt hat oder genug Zeit verstrichen ist; im Sinne von „veraltet“ oder „altmodisch“ können Meinungen und Weltanschauungen als „verstaubt“ bezeichnet werden;
  • der „Staub“ im Überdruck von Pulverschnee-Lawinen
  • die technischen Stäube, die meist sehr fein sind, häufig mit künstlichen oder natürlichen Mikrofasern oder mit Aerosolen durchmischt sind und zwar prinzipiell „staubähnlich“ sind, aber in der Umgangssprache nicht darunter subsumiert werden,
  • der Staub und Staubschweif von Kometen,
  • der interplanetare Staub des Zodiakallichtes und der Mikrometeoriten,
  • der interstellare, kosmische Staub
  • „(Erde zu Erde,) Asche zu Asche, Staub zu Staub“ ist eine Formulierung aus der 1892 Deutsch Ausgabe des Book of Common Prayer der amerikanischen Episkopalkirche.[2] Im Kapitel "Die Ordnung für das Begräbniß" (Englisch: The Burial of the Dead) heißt es: "Nachdem es denn Allmächtigen Gott nach Seinen weisen Vorsehung gefallen hat, die Seele unsres entschlafenen Bruders aus dieser Welt zu sich zu nehmen, legen wir seinen Leib in Gottes Acker — Erde zur Erde, Asche zur Asche, Staub zum Staube — in Erwartung der allgemeinen Auferstehung am jüngsten Tage und des Lebens der zukünftigen Welt durch Jesum Christum unsern Herrn, bei dessen herrlicher Wiederkunft zum Gericht die Erde und das Meer sollen ihre Todten wiedergeben, und die verweslichen Leiber derer, die in Ihm schlafen, sollen verwandelt und ähnlich werden Seinem verklärten Leibe nach der Wirkung, durch welche Er kann auch alle Dinge Ihm unterthänig machen."
  • in der Kochkunst nennt man das Binden einer zu dünnen Soße mit Mehl oder Kartoffelstärke „die Flüssigkeit stauben“
  • im Rotwelsch ist „abstauben“ gleichbedeutend mit „stehlen“

An der Salzach – zwischen Oberndorf und Laufen – gibt es sogar ein Staubmuseum (Museum of Dust) (Katalog, öffentlicher Raum [13]). Es handelt sich dabei um ein Grenzhäuschen, das vom Museums-Kurator Dieter Buchhart zum 'white cube' (ein Ort an dem Kunst gezeigt wird) erklärt wurde. An dem Pavillon befestigte Buchhart 'nicht ohne Ironie' ein Schild mit der Aufschrift: Museum of Dust.[14] Damit soll die Aufmerksamkeit auf den sonst unliebsamen Staub gelenkt werden. Staub wird so zu einem 'Kunstobjekt im Museum'.

Der Kölner Künstler und Kunsthistoriker Wolfgang Stöcker baut ein Deutsches Staubarchiv auf.

Literatur

Zitierte Literatur

  1. siehe Duden
  2. M.O. Andreae: Climatic effects of changing atmospheric aerosol levels. In: World Survey of Climatology (ed. H. E. Landsberg), Vol. XVI: Future Climates of the World, A. Henderson-Sellers (ed.), Elsevier Publishers, Amsterdam 1994, ISBN 0-444-89322-9
  3. Umweltbundesamt Berlin (Hrsg.): Hintergrundpapier zum Thema Staub/Feinstaub (PM). Umweltbundesamt, Berlin, März 2005.
  4. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson (eds.): Climate Change 2001: The Scientific Basis. Tabelle 5.3. Cambridge University Press, Cambridge (U.K.) 2001, ISBN 0-521-80767-0 (Hardcover) bzw. 0521-01495-6 (Paperback). Das Buch ist in HTML-Form oder als pdf-Dateien unter [1] veröffentlicht.
  5. Wilfrid Bach: Our Threatened Climate. D. Reidel Publishing Company, Dordrecht (The Netherlands) 1984, ISBN 90-277-1680-3
  6. 6,0 6,1 Umweltbundesamt Berlin: Umweltdaten Deutschland online – Tabelle Emissionen nach Emittentengruppen (Stand: September 2003)
  7. 8,0 8,1 Peter Schmid, Christoph Hügelien, Robert Gehrig: Beitrag des Reifenabriebs zu den Staubemissionen des Straßenverkehrs: Bestimmung durch Leitsubstanzen.
  8. 9,0 9,1 RL 89/427/EWG: Richtlinie 89/427/EWG vom 21. Juni 1989 zur Änderung der Richtlinie 80/779/EWG über Grenzwerte und Leitwerte der Luftqualität für Schwefeldioxid und Schwebestaub (Amtsblatt der Europäischen Gemeinschaften L201, S. 53 ff.)
  9. 10,0 10,1 RL 1999/30/EG: Richtlinie 1999/30/EG des Rates vom 22. April 1999 über Grenzwerte für Schwefeldioxid, Stickstoffdioxid und Stickstoffoxide, Partikel und Blei in der Luft (Amtsblatt der Europäischen Gemeinschaften L163 (29. Juni 1999), S. 41–60)
  10. 11,0 11,1 11,2 11,3 11,4 TRGS 900: Technische Regeln für Gefahrstoffe 900 – Grenzwerte in der Luft am Arbeitsplatz „Luftgrenzwerte“
  11. TRGS 553: Technische Regeln für Gefahrstoffe 553 – „Holzstaub“
  12. http://www.art-perfect.de/dieter-buchhart-cut-museum-moderner-kunst-passau.htm
  13. http://www.guggenberger-verlag.at/pdf/KNIE_Auszug.pdf

Staub allgemein

  • Jens Soentgen & Knut Völzke (Hg.): Staub – Spiegel der Umwelt. Stoffgeschichten, Band 1. München: oekom verlag, 2006. ISBN 3-936581-60-6
  • Erich H. Wichmann, Joachim Heinrich, Josef Cyrys, Claudia Spix: Saure Aerosole als Teil der partikelförmigen Luftverunreinigungen. Umweltmedizin in Forschung und Praxis 4(1), S. 43–53 (1999), ISSN 1430-8681
  • Bundesweite Staub-Vergleichsmessung. Gefahrstoffe – Reinhaltung der Luft – 10 /2003, S. 39, ISSN 0949-8036
  • Carsten Möhlmann: Staubmesstechnik – damals bis heute. Gefahrstoffe – Reinhaltung der Luft – 65(5), S. 191–194 (2005), ISSN 0949-8036
  • Meinolf Schumacher: Schmutzmaterie: Staub, in: ders.: Sündenschmutz und Herzensreinheit. Studien zur Metaphorik der Sünde in lateinischer und deutscher Literatur des Mittelalters, München: Fink Verlag 1996, S. 384-392, ISBN 3-7705-3127-2

Feinstaub

  • Joachim Heinrich, Veit Grote, Annette Peters, Erich H. Wichmann: Gesundheitliche Wirkungen von Feinstaub: Epidemiologie der Langzeiteffekte. Umweltmedizin in Forschung und Praxis 7(2), S. 91–99 (2002), ISSN 1430-8681
  • Arbeitsgruppe „Wirkungen von Feinstaub auf die menschliche Gesundheit“ der Kommission Reinhaltung der Luft im VDI und DIN: Bewertung des aktuellen wissenschaftlichen Kenntnisstandes zur gesundheitlichen Wirkung von Partikeln in der Luft – Arbeitsgruppe „Wirkungen von Feinstaub auf die menschliche Gesundheit“ der Kommission Reinhaltung der Luft im VDI und DIN. Umweltmedizin in Forschung und Praxis 8(5), S. 257–278 (2003), ISSN 1430-8681
  • J. Junk, A. Helbig: Die PM10-Staubbelastung in Rheinland-Pfalz. Neue gesetzliche Regelungen für Feinstaub und erste Messergebnisse. Gefahrstoffe – Reinhaltung der Luft – 1/2 /2003, S. 43, ISSN 0949-8036
  • T. Pregger, R. Friedrich: Untersuchung der Feinstaubemissionen und Minderungspotenziale am Beispiel Baden-Württemberg. Gefahrstoffe – Reinhaltung der Luft 64(1/2), S. 53–60 (2004), ISSN 0949-8036
  • M. Struschka, V. Weiss, G. Baumbach: Feinstaub – Emissionsfaktoren und Emissionsaufkommen bei kleinen und mittleren Feuerungsanlagen. Immissionsschutz (Berlin) 9(1), S. 17–22 (2004), ISSN 1430-9262

Hausstaub

  • Hans Schleibinger, Detlef Laußmann, Henning Samwer, Angelika Nickelmann, Dieter Eis, Henning Rüden: Unterscheidung von Schimmel- und Nichtschimmelwohnungen anhand von Sporen aus Hausstaubproben – Ergebnisse einer Feldstudie im Großraum Berlin. Umweltmedizin in Forschung und Praxis 9(4), S. 251–262 (2004), 9(5), S. 289–297 (2004), 9(6), S. 363–376 (2004), ISSN 1430-8681
  • Regine Nagorka, Christiane Scheller, Detlef Ullrich: Weichmacher im Hausstaub. Gefahrstoffe – Reinhaltung der Luft 65(3), S. 99–105 (2005), ISSN 0949-8036
  • Regine Nagorka, André Conrad, Christiane Scheller, Bettina Süßenbach, Heinz-Jörn Moriske: Weichmacher und Flammschutzmittel im Hausstaub. Teil 1: Phthalate. In: Gefahrstoffe, Reinhaltung Luft Bd. 70, Nr. 3, 2010, ISSN 0949-8036, S. 70–76
  • Regine Nagorka, André Conrad, Christiane Scheller, Bettina Süßenbach, Heinz-Jörn Moriske: Weichmacher und Flammschutzmittel im Hausstaub. Teil 2: Phthalat-Ersatzstoffe und Flammschutzmittel. In: Gefahrstoffe, Reinhaltung Luft Bd. 71, Nr. 6, 2011, ISSN 0949-8036, S. 286 – 292
  • Björn Kempken, Werner Butte: Konzentrationen an Blei, Cadmium, Mangan und Zink in Fraktionen des Hausstaubs. In: Gefahrstoffe, Reinhaltung Luft Bd. 70, Nr. 3, 2010, ISSN 0949-8036, S. 98–102

Spezieller Staub

  • M. Poppe, B. Detering, J. Neuschaefer-Rube, W. Woeste, B. /Wüstefeld, J. Wolf: Holzstaubbelastung in Arbeitsbereichen der deutschen Holzindustrie. Gefahrstoffe – Reinhaltung der Luft – 06/2002, S. 247, ISSN 0949-8036
  • Gerhard Soltys, Franz Gredler: Atemwegserkrankung durch Mehlstaub. Sichere Arbeit (Wien) 3/2004, S. 18–21 (2004) Artikel als pdf-Datei unter [3]

Siehe auch

  • Sternenstaub (Astronomie), Interstellarer Staub (siehe Interstellare Materie)
  • Hausstauballergie, Hausstaubmilben
  • Bestäubung und Staubgefäß, siehe Staubblatt (Stamen), Blattorgan in der Blüte der Samenpflanzen
  • Staubsauger
  • Luftfilter, HEPA-Filter, Elektrofilter, Elektroentstaubung
  • Staublunge, siehe Silikose, Pneumokoniose
  • Staubexplosion, Kohlenstaubexplosion
  • Gebrochene Mineralstoffe (Gesteinsmehl)
  • Schmutz

Weblinks

 Commons: Staub – Sammlung von Bildern, Videos und Audiodateien

Vorlage:Commonscat/WikiData/Difference

Wiktionary Wiktionary: Staub – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

News mit dem Thema Staub

16.05.2022
Milchstraße | Sterne
Filament oder flach: Auf die Perspektive kommt es an
Forschende haben mithilfe von Zehntausenden von Sternen, die von der Raumsonde Gaia beobachtet wurden, die 3D-Gestalt zweier großer sternbildender Molekülwolken, der Kalifornien-Wolke und der Orion-A-Wolke, ermittelt.
10.02.2022
Astrobiologie
Biomoleküle auf kosmischen Staubkörnern
Eine ungewöhnliche neue Form von chemischer Reaktion könnte ermöglichen, dass kleine Biomoleküle, genauer: Peptide, auf der eisigen Oberfläche von kosmischen Staubkörnern entstehen.
30.12.2021
Sonnensysteme | Planeten
Rekonstruktion kosmischer Geschichte kann Eigenschaften von Merkur, Venus, Erde und Mars erklären
Astronomen ist es gelungen, die Eigenschaften der inneren Planeten unseres Sonnensystems aus unserer kosmischen Geschichte heraus zu erklären: durch Ringe in der Scheibe aus Gas und Staub, in der die Planeten entstanden sind.
16.06.2021
Sterne
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
24.02.2021
Kometen_und_Asteroiden
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
07.01.2021
Raumfahrt | Festkörperphysik | Quantenoptik
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
06.10.2020
Planeten | Sterne
Von heißem Staub umgeben
Internationales Forschungsteam unter CAU-Beteiligung beobachtet heiße Staubringe um Sterne in neuem Wellenlängenbereich.
22.09.2020
Astrophysik | Festkörperphysik
Gefangenes Wasser auf Sternenstaub
Astrophysiker der Uni Jena beweisen, dass Staubpartikel im All mit Eis vermischt sind.
13.07.2020
Sterne
Massereiche Sternembryos wachsen in Schüben
Die Versorgung von massereichen Sternembryos mit Nahrung aus ihrer umgebenden Scheibe aus Gas und Staub war lange Zeit ein Rätsel.
06.07.2020
Galaxien | Planeten | Sterne
Kosmischer Stoßverkehr in der Stern- und Planetenentstehung
Das molekulare Gas in Galaxien ist in einer hierarchischen Struktur angeordnet.
01.07.2020
Festkörperphysik
3D-Druck auf den Mond bringen – unter Mondbedingungen geschmolzen
Die Kugeln wirken unscheinbar – doch sind sie weltweit einzigartig.
30.06.2020
Sterne
Das Verschwinden eines massereichen Sterns
Mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) haben Astronomen das Fehlen eines instabilen massereichen Sterns in einer Zwerggalaxie aufgedeckt.
29.06.2020
Sterne
Beteigeuze - Ein Riese mit Makeln
Beteigeuze, der helle Stern im Sternbild Orion, faszinierte Astronomen in den letzten Monaten wegen seines ungewöhnlich starken Helligkeitsabfalls.
05.06.2020
Astrophysik | Biophysik
Auf dem Weg vom Staub zum Leben
Astronomen des Max-Planck-Instituts für Astronomie (MPIA) und der Universität Jena haben neue Erkenntnisse zu Eigenschaften eisbedeckter kosmischer Staubkörner gewonnen – winziger kosmischer "Chemielabors".
20.05.2020
Exoplaneten
ESO-Teleskop sieht Anzeichen für Geburt eines Planeten
Beobachtungen mit dem Very Large Telescope der Europäischen Südsternwarte (VLT) der ESO (European Southern Observatory) haben deutliche Anzeichen für die Entstehung eines Planetensystems ergeben.
02.04.2020
Festkörperphysik | Quantenoptik
Wie man Schmutz einfach entfernt
Schmutz ist nicht immer gleich Schmutz. Staub haftet nur wenig an Oberflächen. Es gibt aber auch Schmutz, wie zum Beispiel eingetrocknete Farbe, welcher stark klebt. Doch wie kann man die Hafteigenschaften einer Oberfläche gezielt einstellen, so dass unterschiedlicher Schmutz nicht dran kleben bleibt?
15.01.2020
Vorsintflutlicher Sternenstaub
Forscher datierten Sternenstaub aus einem Meteoriten auf sieben Milliarden Jahre – der älteste Feststoff, der bisher auf der Erde gefunden wurde.
14.01.2020
Heißes Gas füttert die Spiralarme der Milchstraße
Ein internationales Forschungsteam, mit wesentlicher Beteiligung von Astronomen des Max-Planck-Instituts für Astronomie (MPIA), hat wichtige Erkenntnisse darüber gewonnen, woher das Material in den Spiralarmen der Milchstraße stammt, aus dem sich letztendlich neue Sterne formen.
10.12.2019
Sternenstaub von Roten Riesen
Ein Teil des Materials, aus dem die Erde entstand, war Sternenstaub von roten Riesensternen.
26.09.2019
Planeten | Sterne
Wenn Zwerge Riesen gebären
Astronominnen und Astronomen des CARMENES-Konsortiums haben einen neuen Exoplaneten entdeckt, der nach derzeitigem Wissensstand nicht existieren dürfte.
20.08.2019
Sternenstaub im antarktischen Schnee liefert Hinweise auf die Umgebung des Sonnensystems
Bei gewaltigen Sternenexplosionen entsteht das seltene Isotop Eisen-60.
07.08.2019
Anatomie einer kosmischen Möwe
Diese farbenfrohe und faszinierende Ansammlung von Objekten ist bekannt als der Möwennebel, benannt nach seiner Ähnlichkeit mit einer Möwe im Flug.
11.06.2019
Sonnensystem: Mehr Supernova, weniger Roter Riese
Meteoritenanalysen zeigen, dass unser Sonnensystem aus doppelt so viel Supernova-Staub besteht als bisher angenommen.
22.05.2019
Galaxien als „kosmische Kochtöpfe“
Die Entstehung von Sternen innerhalb interstellarer Wolken aus Gas und Staub, sogenannten Molekülwolken, verläuft sehr schnell, aber auch sehr „ineffizient“.
09.04.2019
Sind „Braune Zwerge“ gescheiterte Sterne oder Super-Planeten?
Die „Lücke“ zwischen Sternen und den viel kleineren Planeten füllen „Braune Zwerge“.
14.03.2019
Eine kosmische Fledermaus in der Dunkelheit
Versteckt in einer der dunkelsten Ecken des Sternbilds Orion, breitet diese kosmische Fledermaus ihre diffusen Flügel durch den interstellaren Raum in zweitausend Lichtjahren Entfernung aus.
06.02.2019
Blasen von brandneuen Sternen
Diese beeindruckende Region neu gebildeter Sterne in der Großen Magellanschen Wolke (GMW) wurde vom Multi Unit Spectroscopic Explorer Instrument (MUSE) am Very Large Telescope der ESO eingefangen.
10.01.2019
Festkörperphysik
Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften
Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technologischen Anwendungen.
17.12.2018
Quantenoptik
Neue Laserstrahlen für die Glasbearbeitung – geformt nach Kundenwunsch
Glas mit beliebigen Konturen trennen?
21.11.2018
Astrophysik | Klassische Mechanik
Wie aus Staub Planeten entstehen
Physiker aus Braunschweig und Japan simulieren im Labor Prozesse bei der Planetenentstehung: Staubklumpen gelten als Baustoff bei der Entstehung von Planeten.
11.04.2018
Sterne
SPHERE enthüllt faszinierende Vielfalt von Scheiben um junge Sterne
ESO-Bildveröffentlichung (Garching): Neue Bilder des SPHERE-Instruments am Very Large Telescope der ESO zeigen in nie gekannter Detailgenauigkeit die Staubscheiben, die junge Sterne in unserer kosmischen Nachbarschaft umgeben.
08.12.2017
Schwarze_Löcher
Das fernste Schwarze Loch im Kosmos: Quasar in Entfernung von 13 Milliarden Lichtjahren entdeckt
Astronomen haben den entferntesten bekannten Quasar entdeckt – so weit von uns entfernt, dass sein Licht mehr als 13 Milliarden Jahre brauchte, um uns zu erreichen.
03.11.2017
Milchstraße | Sterne
ALMA entdeckt kalten Staub um nächstgelegenen Stern
Astronomen haben mit dem ALMA-Observatorium in Chile kalten Staub um unseren nächsten Nachbarstern Proxima Centauri entdeckt.
30.06.2017
Physikgeschichte
Woher wissen wir wie alt die Erde ist?
Die Schöpfungsmythen waren die erste Quelle, nach der Theologen das Alter der Erde bestimmten.
30.06.2017
Galaxien | Astrophysik
“Auriga”-Projekt enthüllt die Geschichte von Galaxien
Ein Forschungsteam unter der Leitung von HITS-Wissenschaftler Robert Grand erstellte 36 Simulationen von Milchstraßen.
09.11.2015
Milchstraße | Astrophysik
VISTA entdeckt neue Komponente der Milchstraße
Astronomen haben mit dem VISTA-Teleskop am Paranal-Observatorium der ESO einen bisher unbekannten Teil der Milchstraße entdeckt.
28.03.2015
Milchstraße | Schwarze_Löcher
Bislang bester Blick auf Staubwolke, die am Schwarzen Loch im Zentrum der Milchs
Im Mai 2014 kam sich die staubhaltige Gaswolke G2 dem supermassereichen Schwarzen Loch im Zentrum der Milchstraße so nah wie nie zuvor.
03.03.2015
Galaxien
Eine scheinbar alte Galaxie in einem jungen Universum
Astronomen ist es gelungen, in einer der am weitesten entfernten Galaxien, die je untersucht wurden, Staub nachzuweisen.
21.01.2015
Galaxien | Supernovae
Interstellarer Staub gibt Aufschluss zur Entstehung chemischer Elemente
Isotopenforschung der Universität Wien liefert wichtigen Beitrag für internationale Forschungskooperation.