Selenwasserstoff

Strukturformel
Struktur von Selenwasserstoff
Allgemeines
Name Selenwasserstoff
Andere Namen
  • Hydrogenselenid
  • Dihydrogenselenid
  • Selan
Summenformel H2Se
CAS-Nummer 7783-07-5
PubChem 533
Kurzbeschreibung

farbloses Gas mit stechendem Geruch[1]

Eigenschaften
Molare Masse 80,98 g·mol−1
Aggregatzustand

gasförmig

Dichte
  • 3,66 g·l−1 (0 °C, 1013 hPa)[2]
  • 1,97 g·cm−3 (flüssig, am Siedepunkt)[2]
Schmelzpunkt

−66 °C[2]

Siedepunkt

−41 °C (Zersetzung oberhalb von 150 °C)[2]

Dampfdruck

0,91 MPa bei 20 °C[2]

Löslichkeit

schlecht in Wasser (9,8 g·l−1)[2]

Brechungsindex

1,412 (16,85 °C)[3]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [4]
keine Einstufung verfügbar
H- und P-Sätze H: siehe oben
P: siehe oben
EU-Gefahrstoffkennzeichnung [5][2]
Hochentzündlich Sehr giftig
Hoch-
entzündlich
Sehr giftig
(F+) (T+)
R- und S-Sätze R: 12-26
S: (1)-9-16-33-36-45
MAK

0,015 ml·m−3[2]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. Brechungsindex: Na-D-Linie, 20 °C
Vorlage:Infobox Chemikalie/Summenformelsuche nicht möglich

Selenwasserstoff, auch Monoselan, ist eine Verbindung aus Selen und Wasserstoff. Sie entsteht beim Auflösen salzartiger Selenide in verdünnten Säuren. Selenwasserstoff ist ein farbloses, äußerst giftiges Gas mit unangenehm fauligem Geruch. Bereits einmaliges Einatmen kleiner Mengen führt zu unangenehmen, lange anhaltenden Reizungen der Schleimhäute (sog. „Selenschnupfen“). Selenwasserstoff ist giftiger als Schwefelwasserstoff. Bei Laborversuchen, bei denen auch nur sehr geringe Mengen Selenwasserstoff entstehen, muss unbedingt unter einem Abzug gearbeitet werden und ein gasdichter Schutzanzug getragen werden.

Selenwasserstoff dient in der Halbleiter- und Elektronikindustrie zur Dotierung von Halbleitern.

Physikalische Eigenschaften

Strukturformel von Selenwasserstoff, H2Se

Selenwasserstoff ist gewinkelt gebaut (Bindungswinkel 91°), die Bindungslänge Se–H beträgt 146 pm.[6]

Weitere Eigenschaften
Eigenschaft Wert
Kritische Temperatur 138 °C[1]
Kritischer Druck 8,92 MPa[1]
Kritische Dichte 0,76 kg/l
Tripelpunkt Temperatur −65,65 °C
Tripelpunkt Druck 0,2738 bar

Herstellung

Zu reinem Selenwasserstoff führt im Labor das Auflösen von trockenem Aluminiumselenid in Wasser, oder eine Reaktion der Elemente bei 400 °C:[7]

$ \mathrm{Al_2Se_3 + 6\ H_2O \longrightarrow \ 3\ H_2Se + 2\ Al(OH)_3} $
$ \mathrm{H_2 + Se \longrightarrow H_2Se} $

Weblinks

Einzelnachweise

  1. 1,0 1,1 1,2 Roempp Online - Version 3.5, 2009, Georg Thieme Verlag, Stuttgart.
  2. 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 Eintrag zu CAS-Nr. 7783-07-5 in der GESTIS-Stoffdatenbank des IFA, abgerufen am 30.08.2007 (JavaScript erforderlich).
  3.  P. G. Sennikov, V. E. Shkrunin, D. A. Raldugin, K. G. Tokhadze: Weak Hydrogen Bonding in Ethanol and Water Solutions of Liquid Volatile Inorganic Hydrides of Group IV-VI Elements (SiH4, GeH4, PH3, AsH3, H2S, and H2Se). 1. IR Spectroscopy of H Bonding in Ethanol Solutions in Hydrides. In: The Journal of Physical Chemistry. 100, Nr. 16, Januar 1996, ISSN 0022-3654, S. 6415–6420, doi:10.1021/jp953245k.
  4. Diese Substanz wurde in Bezug auf ihre Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  5. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  6. Nils Wiberg, Egon Wiberg, Arnold Fr. Holleman: Lehrbuch der Anorganischen Chemie. 102., stark umgearb. u. verb. Auflage, Gruyter Verlag, 2007, ISBN 978-3-11-017770-1, S. 627.
  7. G. Brauer (Hrsg.), Handbook of Preparative Inorganic Chemistry 2nd ed., Band 1, Academic Press 1963, S. 418-9.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

07.04.2021
Teilchenphysik
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
19.04.2021
Exoplaneten
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.
25.03.2021
Quantenoptik
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
24.03.2021
Schwarze_Löcher - Elektrodynamik
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Astrophysik
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
23.03.2021
Supernovae - Teilchenphysik
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.