Die Korrosion, Rost, Sauerstoffkorrosion und Wasserstoffkorrosion überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zu vereinigen (→Anleitung). Beteilige dich dazu an der Redundanzdiskussion. Bitte entferne diesen Baustein erst nach vollständiger Abarbeitung der Redundanz und vergiss bitte nicht, den betreffenden Eintrag auf der Redundanzdiskussionsseite mit {{Erledigt|1=~~~~}} zu markieren. Freddie331 (Diskussion) 11:48, 13. Jan. 2013 (CET)
Dieser Artikel behandelt das als Rost bezeichnete Korrosionsprodukt von Eisenwerkstoffen. Für andere Bedeutungen von Rost siehe Rost (Begriffsklärung).
Rostende Schienen
Ein stark angerosteter Träger einer Stahlbrücke
Eine angerostete Containerverriegelung
Rost in der Architektur. Moderne Fassade eines Notariats

Als Rost bezeichnet man das Korrosionsprodukt, das aus Eisen oder Stahl durch Oxidation mit Sauerstoff in Gegenwart von Wasser entsteht. Rost ist porös und schützt nicht vor weiterer Zersetzung, anders als die Oxidschicht vieler metallischer Werkstoffe wie Chrom, Aluminium oder Zink. Die Verwitterung von Eisenwerkstoffen an Luft und Wasser zu Rost verursacht weltweit jährlich Schäden in Milliardenhöhe. Anhand dieser Eigenschaften werden die Metalle in die Gruppen Eisenmetalle (rosten) und Nichteisenmetalle (rosten nicht) unterschieden.

Übersicht

Zum Korrosionsschutz werden Eisenwerkstoffe mit Schutzschichten überzogen, mit Opferanoden versehen oder auch nachträglich mit Phosphorsäure entrostet (Korrosionsschutz). Chemisch gesehen setzt sich Rost allgemein aus Eisen(II)-oxid, Eisen(III)-oxid und Kristallwasser zusammen, Summenformel: $ \mathrm {x\ Fe^{II}O\cdot y\ Fe_{\ 2}^{III}O_{3}\cdot z\ H_{2}O} $  (x, y, z positive Verhältniszahlen).

Rost ist somit ein wasserhaltiges Oxid des Eisens, eine chemische Verbindung, die zu den Oxiden gehört und zusätzlich Wasser und Hydroxidionen enthält (Oxidhydrat). Sie entsteht durch die Oxidation des Eisens, ohne dass höhere Temperaturen erforderlich wären. Rost ähnelt somit der Verbindung Braunstein (wasserhaltiges Mangandioxid), welche ebenfalls als Oxidhydrat eines Übergangsmetalles anzusehen ist.

Ein stark verrostetes Stahlblech
Rost an einem Traktor

Rost bildet lockere Gefüge geringer Festigkeit. Die Oxidation bewirkt eine Zunahme der Masse und des Volumens. Letztere führt zu Spannungen und zum Abplatzen der Rostschicht (siehe Abbildung rechts). Betonstähle rosten nicht, wenn sie gut gekapselt im Beton eingebettet sind. Zusätzlichen Schutz bietet das alkalische Milieu von Beton. Wenn aber Wasser und Luft Zutritt zum Stahl erhalten, platzt der Beton infolge der Volumenzunahme des Rostes auf und der Zerfall wird beschleunigt.

Elektrochemisches Modell der Rostbildung

Schematische Darstellung des Rostens von Eisen (grau) in Gegenwart von Wasser (blau) und Sauerstoff (weiß), Ziffern siehe Text.

Die Rostbildung (Korrosion) an Eisen beginnt

  • durch den Angriff einer Säure (Säurekorrosion) oder
  • von Sauerstoff und Wasser (Sauerstoffkorrosion) auf die Metalloberfläche.

Säurekorrosion

Im Fall einer Säure-oder Wasserstoffkorrosion entziehen die Protonen (Wasserstoffionen) der Säure dem Metall Elektronen: Eisen reagiert mit Wasserstoff-Ionen im Wasser (bei A) zu Eisen-II-Kationen:

$ \mathrm {Fe\rightleftharpoons \ Fe^{2+}+2\ e^{-}} $

Die Wasserstoffionen (Oxidationsmittel) reagieren hierbei zu Wasserstoffgas (Redoxreaktion), da sie die Elektronen des Metalles aufnehmen (Reduktion des Oxidationsmittels). Das Reaktionsschema der Gesamtreaktion lautet somit:

$ \mathrm {Fe+2\ H^{+}\rightleftharpoons \ Fe^{2+}+H_{2}} $ (Wasserstoffkorrosion)

Sauerstoffkorrosion

Im Fall einer Sauerstoffkorrosion (Verwitterung des Eisens zu Rost) wirkt Sauerstoff als Oxidationsmittel: Er nimmt Elektronen auf.

In der schematischen Darstellung des Rostens (siehe Bild) befindet sich auf einer Eisenoberfläche (grau) ein Wassertropfen (blau), umgeben von Luft (weiß). Gemäß der Spannungsreihe der Elemente diffundieren die positiv geladenen Eisenionen in die wässrige Umgebung, die Elektronen verbleiben im Metall und laden es negativ auf (Siehe (1) in der Schemazeichnung).

Neutrales Wasser enthält 10-7 mol/L Wasserstoffionen (Autoprotolyse):

$ \mathrm {H_{2}O\rightleftharpoons \ H^{+}+OH^{-}} $

Die negative Aufladung des Metalles und die Grenzschicht aus positiv geladenen Eisenionen über der Eisenoberfläche verhindern im Allgemeinen eine schnelle Umsetzung mit Protonen: Sauerstoff- und luftfreies Wasser greifen das Eisenmetall nicht an.

Ist jedoch Sauerstoff vorhanden, kann er den Transport der Elektronen übernehmen. Er diffundiert von außen in den Wassertropfen (siehe Schemazeichnung). Der Konzentrationsunterschied im Wassertropfen erzeugt nun eine Potenzialdifferenz zwischen (2) und (3). Der anodische Bereich (2) und der kathodische Bereich (3) bilden mit dem Wasser als Elektrolyten eine galvanische Zelle, eine Redoxreaktion läuft ab.

Die Elektronen reagieren mit Wasser und Sauerstoff zu Hydroxid-Ionen (siehe bei (3) in der Schemazeichnung):

$ \mathrm {H_{2}O+{\frac {1}{2}}\ O_{2}+2\ e^{-}\longrightarrow 2\ OH^{-}} $

Die Hydroxid-Ionen bilden mit den Eisenionen Eisen(II)-hydroxid (4).

Eisen(II)-hydroxid ist olivgrün bis graugrün, und wird in Gegenwart von Wasser und Luft zu Eisen-III-Ionen umgesetzt. Zusammen mit den Hydroxidionen bildet sich bei dieser zweiten Redoxreaktion rostbraunes Eisen(III)-hydroxid:

$ \mathrm {2\ Fe^{2+}+4\ (OH)^{-}+{\frac {1}{2}}\ O_{2}+H_{2}O\longrightarrow 2\ Fe(OH)_{3}} $

Vereinfacht lautet das Gesamt-Reaktionsschema somit:

$ \mathrm {2\ Fe+{\frac {3}{2}}\ O_{2}+3\ H_{2}O\longrightarrow 2\ Fe(OH)_{3}} $

Durch Wasserabgabe bildet sich hieraus schwerlösliches Eisen(III)-oxid-hydroxid, das sich auf der Eisenoberfläche bei (5) ablagert:

$ \mathrm {Fe(OH)_{3}\longrightarrow FeO(OH)\cdot H_{2}O} $

Außerdem finden folgende Vorgänge statt:

$ \mathrm {2\ FeO(OH)\longrightarrow Fe_{2}O_{3}+H_{2}O} $
$ \mathrm {Fe(OH)_{2}\longrightarrow FeO+H_{2}O} $

Das anfangs gebildete Gemisch aus Eisen(II)-hydroxid und Eisen(III)-hydroxid wird durch teilweise Wasserabgabe zu einer beständigen Mischung aus Eisen(II)-oxid, Eisen(III)-oxid und Kristallwasser umgesetzt, die umgangssprachlich als Rost bezeichnet wird:

$ \mathrm {\mathrm {x\ Fe^{II}O\cdot y\ Fe_{\ 2}^{III}O_{3}\cdot z\ H_{2}O} } $  (x, y, z positive Verhältniszahlen)

Beschleunigende Faktoren bei der Rostbildung

Stark angerostete Schere, ca. 1950

Wenn Eisen mit einem anderen Metall in Berührung kommt, entsteht an der Kontaktstelle ein Lokalelement, das zur Korrosion des unedleren Metalls führt. Der Rostvorgang wird zudem durch die Anwesenheit von Salzen beschleunigt, da diese die Leitfähigkeit des Wassers erhöhen. Die Wanderung der Ionen im Wasser ist wichtig für den Korrosionsprozess, andernfalls wäre der Stromkreis unterbrochen und die Korrosion käme sehr schnell zum Erliegen (vgl. Salzbrücke in einer normalen elektrochemischen Zelle).

Oxidations- und Korrosionvorgänge, die der Rostbildung ähneln

Wasserfreie Oxidationsprodukte, die sich bei hohen Temperaturen auf der Oberfläche von Eisen bilden, werden als Zunder bezeichnet. Sie bestehen anders als Rost aus Wasser- bzw. Hydroxid-freien Eisenoxiden unterschiedlicher Oxidationsstufen. Besonders beim Schmieden von glühendem Eisen platzen durch Hammerschläge von der Oberfläche dünne grauschwarze Eisenoxidschichten ab, die als Hammerschlag bezeichnet werden.

Auch bei anderen Metallen, wie Zink, Chrom, Aluminium oder Nickel, die teilweise auch unedler als Eisen sind, oxidieren nur die obersten Atomlagen zu einer kaum sichtbaren Oxidschicht, die das darunterliegende Metall vor weiterer Reaktion mit Sauerstoff abschirmt (siehe auch Passivierung). In Gegenwart von Luft und Wasser können jedoch auch Verwitterungs- und Korrosionsvorgänge eintreten, so z. B. bei Kupfer zu Patina. Beim Eisen jedoch kommt die Korrosion an der Rost/Materialgrenzfläche nicht zum Stillstand, weil die elektrische Leitfähigkeit des schon gebildeten (feuchten) Rostes und seine Sauerstoffdurchlässigkeit die weitere Korrosion an der Grenze Rost/Material begünstigen.

Bei Temperaturen › 180 °C bilden sich auf Oberflächen von Eisenwerkstoffen bei Einwirkung von Wasserdampf mit hoher Temperatur Schutzschichten aus Magnetit ( Fe3O4 ). Das Magnetit wird durch Reaktion von metallischem Eisen mit Wassermolekülen unter Bildung von Wasserstoff gebildet. Bei Rohren in Hochdruckkesseln mit örtlich sehr hoher Wärmebelastung kann diese Reaktion verstärkt ablaufen und ist manchmal eine der Ursachen von Rohrreissern. Hohe pH-Werte des Wassers, insbesondere in Gegenwart von Alkaliionen, beschleunigen diese Reaktion zusätzlich.

Entrostung

Mechanisches Entrosten

Stark gerostete Metalle können durch Bürsten oder Schleifen von Rost befreit werden. Eine der wirkungsvollsten Methoden für die Entrostung ist das Strahlen mit Sand oder ähnlichen Materialien, die frei von Kieselsäure sind. Diese Methode wird in der Technik vor einem Anstrich überwiegend angewendet. Ist die Sandstrahlmethode nicht ausreichend, kann auch der pneumatische Nadelentroster zum Einsatz kommen. Die vollständige Entfernung von Rost bis auf das blanke Metall ist eine der Voraussetzungen, dass ein korrosionsbeständiger Anstrich erreicht werden kann.

Leichter Rost lässt sich auch mit einer schwachen Säure abwaschen. Geeignet ist beispielsweise verdünnte Phosphorsäure. Damit die Säure das Metall nicht angreift, muss sie danach mit viel Wasser abgespült werden. Das Metall muss gründlich getrocknet und vor weiterer Korrosion geschützt werden. Phosphorsäure dient auch als Rostumwandler und wird in verschiedenen Mischungen für die Instandsetzung etwa von Autos eingesetzt.

Bei all diesen Methoden zur Entrostung wird der Rost entfernt, der rostige Abtrag geht verloren.

  • Siehe auch: Biologische Entrostung, Bristle Blasting, Kugelstrahlen

Korrosionsschutz

Aus dem Modell lassen sich drei Strategien für den Korrosionsschutz ableiten:

Fernhalten von Sauerstoff

Beispiel: Heizungsrohre aus Eisen rosten innen nicht, wenn das Wasser in einem geschlossenen System ohne Luftzutritt geführt wird. Zudem sinkt die Löslichkeit von Sauerstoff mit steigender Erwärmung des Wassers und erreicht bei 111,6 °C ein Minimum. Über dieser Temperatur hinaus steigt allerdings das Lösungsvermögen für Sauerstoff wieder deutlich an.

Man kann diesen Reaktionen aber auch durch verschiedene andere Schutzmaßnahmen vorbeugen. Ein Beispiel dafür ist die Passivierung: das Überziehen mit solchen unedleren Metallen, die eine stabile Oxidschicht bilden. Ein Metall kann ebenfalls durch Galvanisieren, Verzinken oder Verchromen mit einem anderen Metall als Schutzschicht gegen Oxidation versehen werden. Weitere Schutzüberzüge sind diffusionsdichte und porenfreie Anstriche und Beschichtungen mit Kunststoffen und Schleuderbeton.

Fernhalten von Feuchtigkeit

Eisenpfosten, dessen Schutzschicht durch Rostaufbrüche teilweise abgeplatzt ist.
Getränkedose aus Weißblech mit Rostdurchbrüchen durch die Zinn-Schutzschicht.
Rost an einem Schiff

Da Wasser als Elektrolyt in der Reaktion zur Rostentwicklung wirkt, ist das Trockenhalten eine gute Gegenstrategie. So gibt es beispielsweise in Ländern mit geringer Luftfeuchtigkeit praktisch keine Rostschäden an Autos.

Eine weitere Möglichkeit sind Schutzschichten aus Fett, Lack, Chrom oder Metallauflagen, die das Eisen von der Umgebung abschirmen (Feuerverzinken, Weißblech). Sobald diese Schutzschicht zerstört wird, beginnt der Rostungsprozess, siehe Bilder links und rechts.

Nichtrostender Stahl ist eine Eisenlegierung mit einem Chromanteil von mehr als 12 % und wird durch die Chromoxidschicht vor Oxidation geschützt.

Abbau der Potenzialdifferenz in Lokalelementen

Beispiel 1: Feuerverzinkung schützt Eisen nachhaltig vor Rostbefall. Kommt es zu einer Schädigung der Beschichtung, bilden Zink und Eisen bei Zutritt von Wasser ein Lokalelement (ähnlich einer Batterie). Zink als das unedlere Metall korrodiert und bewahrt das Eisen vor Oxidation. In den meisten Zinkstaubfarben kann das Zink dagegen nicht galvanisch wirken, da es vom Bindemittel isoliert wird. Nur Zinkstaubfarben mit elektrisch leitendem Bindemittel oder Zinkstaubfarben auf Epoxidharz-Basis mit geeigneter Pigment-Volumen-Konzentration (PVK), bei der sich die Zinkteilchen berühren, schützen gut vor Korrosion.[1]

Bei einer Beschichtung mit einem edleren Metall (zum Beispiel Zinn bei Weißblech) tritt der umgekehrte Fall ein. Das Eisen rostet, möglicherweise verdeckt von der Schutzschicht (siehe Bild der Getränkedose). Die Anwesenheit eines edleren Metalls fördert sogar die Oxidation. Das Lokalelement aus Eisen und dem edleren Metall verhindert die schützende negative Aufladung des Eisens (siehe oben).

Beispiel 2: Eisenrohre werden elektrisch mit einer sogenannten Opferanode aus einem unedleren Metall verbunden. Wie im ersten Beispiel wird Eisen auf Kosten der Opferanode geschützt, sofern beide über einen Elektrolyten, zum Beispiel feuchtes Erdreich, im Kontakt stehen.

Beispiel 3: Statt einer Opferanode schützt auch eine elektrisch leitende Elektrode (zum Beispiel Graphit), wenn sie über eine externe Gleichspannungsquelle auf einem positiven Potenzial relativ zum Eisen gehalten wird. Dies nennt man dann kathodischen Korrosionsschutz, der bei Pipelines und im Brückenbau eingesetzt wird.

Siehe auch

Einzelnachweise

  1. G. Meichsner, T. Mezger, J. Schröder: Lackeigenschaften messen und Steuern: Rheologie- Grenzflächen- Kolloide. Vincentz Network, 2003, ISBN 978-3-87870-739-4

Literatur

  • Werner Schatt: Einführung in die Werkstoffwissenschaft. Deutscher Verlag für Grundstoffindustrie, Leipzig 1991. ISBN 3-342-00521-1
  • Günter Schulze, Hans-Jürgen Bargel: Werkstoffkunde. Schroedel, Hannover 1978, Springer, Berlin 72000. ISBN 3-540-66855-1
  • Hömig: Physikochemische Grundlagen der Speisewasserchemie, Vulkan Verlag Dr. W. Classen, Essen 1963

Weblinks

Wiktionary Wiktionary: Rost – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Commons: Rost – Sammlung von Bildern, Videos und Audiodateien

Vorlage:Commonscat/WikiData/Difference

 Wikiquote: Rost – Zitate

News mit dem Thema Rost

14.04.2022
Elektrodynamik | Festkörperphysik | Klassische Mechanik
Elektrisierte Wassertropfen
Etwas so einfaches wie die Bewegung von Wassertropfen auf Oberflächen sollte eigentlich verstanden sein – würde man mutmaßen.
08.03.2022
Sonnensysteme | Astrobiologie
Bisher größtes Molekül in einer Planeten bildenden Scheibe entdeckt
Mit Hilfe des Atacama Large Millimeter/submillimeter Array (ALMA) in Chile haben Forscherinnen des Observatoriums Leiden in den Niederlanden zum ersten Mal Dimethylether in einer Planeten bildenden Scheibe nachgewiesen.
09.02.2022
Plasmaphysik
Fusionsanlage JET stellt neuen Energie-Weltrekord auf
Auf dem Weg zur Energieerzeugung durch Fusionsplasmen haben europäische Wissenschaftler und Wissenschaftlerinnen einen wichtigen Erfolg erzielt.
27.10.2021
Astrophysik | Relativitätstheorie
Auf dem Weg zum Nachweis des Gravitationswellen-Hintergrunds
Die EPTA-Kollaboration berichtet über das Ergebnis einer 24-jährigen Kampagne mit den fünf größten europäischen Radioteleskopen, die zu einem möglichen Signal des Gravitationswellenhintergrunds im Nanohertz-Bereich geführt hat.
12.10.2021
Kometen und Asteroiden
Lerne die 42 kennen: Einige der größten Asteroiden fotografiert
Mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) in Chile haben Astronom:innen 42 der größten Objekte im Asteroidengürtel zwischen Mars und Jupiter abgelichtet.
30.09.2021
Kometen_und_Asteroiden | Planeten
Bombardement von Planeten im frühen Sonnensystem
Vesta, der größte Asteroid unseres Sonnensystems, war sehr viel früher einer umfangreichen Einschlagserie großer Gesteinskörper ausgesetzt als bislang angenommen.
14.06.2021
Galaxien
Entdeckung der größten Rotationsbewegung im Universum
Durch die Kartierung der Bewegungen von Galaxien in riesigen Filamenten, die das kosmische Netz verbinden, entdeckten Astronomen am Leibniz-Institut für Astrophysik Potsdam (AIP) in Zusammenarbeit mit Wissenschaftlerinnen und Wissenschaftlern in China und Estland, dass sich diese langen Ströme aus Galaxien auf Skalen von Hunderten von Millionen Lichtjahren drehen.
06.11.2020
Festkörperphysik | Quantenoptik
„Schilde hoch!“ – Licht definiert seinen eigenen geschützten Weg
Wissenschaftler der Universität Rostock haben eine neue Art photonischer Schaltkreise entwickelt, in denen hochenergetische Lichtstrahlen ihren eigenen Weg definieren können – und sich dabei von äußeren Störeinflüssen abschirmen.
29.09.2020
Kometen_und_Asteroiden | Sonnensysteme | Planeten
Kosmische Diamanten entstehen bei gigantischen planetaren Kollisionen
Geowissenschaftler der Goethe-Universität haben in Meteoriten die größten extraterrestrischen Diamanten gefunden, die je entdeckt wurden – immerhin einige zehntel Millimeter groß.
10.09.2020
Physikdidaktik
Wie astronomische Forschung die Klimakrise beeinflusst, und umgekehrt
Die Klimakrise ist eine der größten Herausforderungen unserer Zeit.
01.09.2020
Sterne
Europas größtes Sonnenteleskop GREGOR enthüllt magnetische Details der Sonne
Das größte europäische Sonnenteleskop GREGOR, das von einem deutschen Konsortium betrieben wird und sich am Teide Observatorium in Spanien befindet, hat gestochen scharfe Bilder der Feinstruktur der Sonne aufgenommen.
27.07.2020
Milchstraße | Sterne | Astrophysik
RAVE: Mehr als ein Jahrzehnt lang Untersuchung der Bewegung von Sternen in der Milchstraße
Wie bewegen sich die Sterne in unserer Milchstraße?
01.07.2020
Quantenoptik | Teilchenphysik
In das Innere der atomaren Materie blicken: Pikoskopie
Wissenschaftlern aus den Arbeitsgruppen von Professor E.
11.06.2020
Sonnensysteme | Sterne | Exoplaneten
Vier neugeborene Exoplaneten von eigener Sonne gegrillt
Ein Team des Leibniz-Institut für Astrophysik Potsdam (AIP) hat das Schicksal des jungen Sterns V1298 Tau und seiner vier Exoplaneten untersucht.
06.05.2020
Teilchenphysik
Kein Einfluss dunkler Materie auf die Kraft zwischen Atomkernen nachweisbar
Auch wenn der größte Teil des Universums aus dunkler Materie besteht, ist sehr wenig über sie bekannt.
07.01.2020
Der Riese in der Milchstraße
Astronomen der Universitäten Wien um João Alves und der Harvard University entdeckten eine riesige, zusammenhängende, gashaltige, wellenförmige Struktur innerhalb der Milchstraße, in der Sterne entstehen – die größte ihrer Art, die jemals in unserer Galaxie beobachtet wurde.
03.12.2019
Astrophysik - Galaktisches Schwergewicht
Schwarzes Loch mit 40 Milliarden Sonnenmassen entdeckt: Im Zentrum des Galaxienhaufes “Abell 85” befindet sich das größte schwarze Loch im nahen Universum – es ist wahrscheinlich das Ergebnis einer Kette von Verschmelzungen kleinerer schwarzer Löcher.
21.11.2019
Forscherteam entdeckt erstmals drei supermassereiche Schwarze Löcher im Kern einer Galaxie
Ein internationales Forscherteam unter der Leitung der Universität Göttingen und des Leibniz-Instituts für Astrophysik Potsdam (AIP) hat erstmals drei supermassereiche Schwarze Löcher im Kern einer Galaxie nachgewiesen.
29.10.2019
Herausforderungen in der Windenergieforschung
Welche Innovationen sind erforderlich, damit Wind zu einer der weltweit wichtigsten Quellen für kostengünstige Stromerzeugung werden kann?
28.10.2019
ESO-Teleskop enttarnt den möglicherweise kleinsten bekannten Zwergplaneten im Sonnensystem
Astronomen haben durch Beobachtungen mit dem SPHERE-Instrument am Very Large Telescope (VLT) der ESO ermittelt, dass der Asteroid Hygiea möglicherweise als Zwergplanet klassifiziert werden könnte.
17.09.2019
Rostocker Forschern gelingt Durchbruch in der Quantenphysik
Quantenphysik ist die umfassende, seit über einhundert Jahren erfolgreiche Theorie der mikrophysikalischen Wirklichkeit.
12.08.2019
Erst der Einschlag von Meteoriten machte Leben auf der Erde möglich
Forschungsteam der Universität Tübingen belegt, dass ein Großteil des Wassers und Kohlenstoffs im Erdmantel aus dem äußeren Sonnensystem stammt.
07.08.2019
Anatomie einer kosmischen Möwe
Diese farbenfrohe und faszinierende Ansammlung von Objekten ist bekannt als der Möwennebel, benannt nach seiner Ähnlichkeit mit einer Möwe im Flug.
04.07.2019
Abstimmung der Energieniveaus von organischen Halbleitern
Physiker des Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) und des Center for Advancing Electronics Dresden (cfaed) der TU Dresden konnten gemeinsam mit Forschern aus Tübingen, Potsdam und Mainz zeigen, wie elektronische Energien in organischen Halbleiterfilmen durch elektrostatische Kräfte eingestellt werden können.
01.05.2019
Rätsel um „unsichtbares“ Gold entschlüsselt
In der größten Goldlagerstätte der USA in Nevada kommt Gold nicht in Form von Nuggets vor.
11.03.2019
Physiker gelingt erstmalig Vorstoß in höhere Dimensionen
Wie die renommierte Fachzeitschrift Nature jüngst berichtet, ist es einer Arbeitsgruppe um den Rostocker Physiker Professor Alexander Szameit experimentell gelungen, das außergewöhnliche Verhalten eines topologischen Isolators in 4-Dimensionen im realen 3-dimensionalen Raum nachzuweisen.
06.03.2019
Milchstraße und darüber hinaus: Himmelsdurchmusterung der nächsten Generation
Das 4-Meter spektroskopische Multi-Objekt-Teleskop 4MOST wird als größte Beobachtungseinrichtung ihrer Art den aktuell drängendsten astronomischen Fragen der Galaktischen Archäologie, der Hochenergie-Astrophysik, der Evolution der Galaxien sowie der Kosmologie nachgehen.
27.02.2019
Neue Studie könnte Verteilung der Dunklen Materie in Galaxien erklären
Dunkle-Materie-Teilchen können sich nur dann aneinander streuen, wenn sie die richtige Energie haben.
17.10.2018
Galaxien
Größter Galaxien-Proto-Superhaufen entdeckt
Ein internationales Team von Astronomen hat mit dem VIMOS-Instrument des Very Large Telescope der ESO eine gewaltige Struktur im frühen Universum entdeckt.
20.08.2018
Astrophysik | Quantenphysik
Quantenverschränkung erstmals mit Licht von Quasaren bestätigt
Quantenphysikern um Anton Zeilinger von der Österreichischen Akademie der Wissenschaften und der Universität Wien gelang mithilfe von bis zu 12 Milliarden Lichtjahre von der Erde entfernten Quasaren der erfolgreiche Nachweis der Quantenverschränkung.
06.08.2018
Festkörperphysik
Mit Elektronenstrahlstrukturierung zu höchstauflösenden OLED-Vollfarbdisplays
OLED-Mikrodisplays etablieren sich zunehmend für den Einsatz in künftigen Wearables und Datenbrillen.
23.07.2018
Elektrodynamik | Festkörperphysik
Studie zu Werkstoffprüfung: Schäden in nichtmagnetischem Stahl mit Magnetismus aufspüren
Verschleiß, Korrosion, Materialermüdung – diese Abnutzungserscheinungen sind den meisten Werkstoffen gemein.
25.06.2018
Plasmaphysik | Teilchenphysik
Fusionsanlage Wendelstein 7-X erreicht Weltrekord
Stellarator-Rekord für Fusionsprodukt / Erste Bestätigung der Optimierung

Höhere Temperaturen und Dichten des Plasmas, längere Pulse und den weltweiten Stellarator-Rekord für das Fusionsprodukt hat Wendelstein 7-X in der zurückliegenden Experimentierrunde erreicht.
24.05.2018
Festkörperphysik
Vom Stroh zum Energieträger: Eintopf-Rezept für Wasserstoffgewinnung
„Abfall wird zu Energie“ titelte das renommierte Fachblatt nature catalysis in seiner Mai-Ausgabe: „Waste turned into energy“.
23.05.2018
Galaxien
Rotierende Rugbybälle unter den massereichsten Galaxien
Den Umlaufbahnen der Sterne in den massereichsten Galaxien widmet sich eine neu erschienene Studie, deren Ergebnisse überraschen: während sich die eine Hälfte der untersuchten sehr massereichen Galaxien wie erwartet um ihre kleine Achse dreht, rotiert die andere Hälfte um ihre große Achse.
11.05.2018
Festkörperphysik | Teilchenphysik
Physiker haben den Dreh mit den zweidimensionalen Kristallen raus
Regensburger Physiker untersuchen in einem internationalen Team atomar dünne Heterostrukturen.
23.04.2018
Elektrodynamik | Quantenoptik
Moleküle brillant beleuchtet
Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert.
11.04.2018
Quantenphysik
Quantenphysiker erzielen Verschränkungsrekord
Quantenverschränkung ist eine zentrale Grundlage für die neuen Quantentechnologien des 21.
16.12.2015
Galaxien
XXL-Jagd auf Galaxienhaufen
ESO-Teleskope haben einem internationalen Team von Astronomen die so wertvolle dritte Dimension bei der groß angelegten Suche nach den größten durch Gravitation gebundenen Objekten des Universums geliefert – den Galaxienhaufen.
16.12.2015
Milchstraße | Astrophysik
Der Effelsberg-Bonn HI Survey
Bonner Astronomen haben einen wissenschaftlichen Meilenstein gesetzt.

Die cosmos-indirekt.de:News der letzten Tage