Weißrost

Erweiterte Suche

Weißrost ist die Bezeichnung für Korrosionsprodukte, die unter bestimmten Bedingungen auf Zinkoberflächen gebildet werden, beispielsweise bei eingeschränktem Zugang von CO2 aus der Luft. Weißrost tritt oft nach der Verzinkung auf; dabei ist er unerwünscht, da er den Korrosionsschutz mindert, unansehnlich sowie teilweise gesundheitsschädlich ist.

Die typische Zusammensetzung des Weißrostes lautet: 2 ZnCO3 • 3 Zn(OH)2 3 H2O, Zinkhydroxid, wenig Zinkoxid und sehr wenig Zinkcarbonat[1].

Entstehung von Weißrost

Zink überzieht sich an Luft mit einer dichten festhaftenden dunkelgrauen Oxid- bzw. Carbonatschicht und wird daher als Korrosionsschutz verwendet. Zur Bildung einer dichten Schicht ist Kohlendioxid notwendig, da dann Zn5(OH)6(CO3)2 entsteht. Bei Mangel an CO2 oder bei chlorid- bzw. sulfathaltigen Bedingungen können aber Probleme auftreten, da sich dann lockere und voluminöse Überzüge bilden. Sie haben keine definierte Zusammensetzung, sondern bestehen aus verschiedenen Produkten.

Eigenschaften

Die Struktur und die Eigenschaften der Schutzschicht hängen stark von den äußeren Bedingungen ab, wie Feuchtigkeit, Temperatur oder anwesende Anionen. Im Allgemeinen ist die Zinkkorrosion ein Prozess von anfänglicher Auflösung mit anschließender Niederschlagsbildung, wobei auch Zn(I)-Zwischenstufen auftreten. Unter besonderen Umständen kann aber auch direkte Oxidbildung auftreten. Typisch für Zinkkorrosion ist, dass mehrere parallele und konsekutive Reaktionen auftreten. Das führt zur Bildung mehrerer verschiedener und inhomogener Oxid- und Hydroxidschichten, wobei besonders die Substratstruktur eine Rolle spielt, da an Defektstellen andere Reaktionen stattfinden als auf der Zinkschicht. Die Reaktionsfolge in sulfat- und chloridhaltigen Lösungen kann man folgendermaßen zusammenfassen:

  • Zn ⇔ Zn(I)+ads + e-
  • ZnZn(I)+ads ⇒ Zn2+(aq) + Zn(I)+ads + e- (Reaktion an der Oberfläche des Zn)
  • Zn(I)+ads ⇒ Zn(II)ads + e- ⇒ Zn2+(aq) ⇒ ZnO(s) (unter Beteiligung von SO42- bzw. Cl-)
  • Zn(II)ads ⇒ ZnO(s) ⇒ ZnSO4(s) ⇒ Zn2+(aq) (in Sulfat)
  • ZnOHads ⇔ ZnOH+(aq) + e-

Die Anwesenheit sonstiger Stoffe führt auch zum Aufbau weiterer Verbindungen. Kohlendioxid in der Luft bewirkt die Bildung diverser Carbonate und Hydroxycarbonate. Außerdem verlangsamt es die Korrosion bei Anwesenheit von Chloriden durch die Bildung von Simonkolleit (Zn5(OH)8Cl2·H2O). Bei gleichzeitiger Anwesenheit von Chlorid und Sulfat können noch eine Reihe weiterer kompliziert aufgebauter Produkte entstehen, die die Eisenauflösung verlangsamen. Ähnliche Vorgänge treten auch beim Angriff von Basen auf Zink auf.

Giftigkeit

Weißrost ist eine Gefahr besonders für Haustiere in Käfigen aus verzinktem Stahl. Durch Lecken und Nagen an den Gittern können vor allem Nagetiere und Vögel leicht zu viel Zink aufnehmen, was zu einer lebensgefährlichen Schwermetallvergiftung führt. Weißrost erhöht diese Gefahr, da er sich leichter löst als eine fest verzinkte Oberfläche.[2][3]

Für Menschen ist Weißrost zumindest bei der Inhalation vermutlich nicht schädlich.[4]

Vermeidung

Durch Chromatierung, organische Überzüge oder das Zulegieren von anderen Metallen kann Weißrost bei der Verzinkung vermieden werden.

Literatur

  • A. El-Mahdy, A. Nishikata, T. Tsuru: Electrochemical corrosion monitoring of galvanized steel under cyclic wet-dry conditions. In: Corrosion Science 42, 2000, S. 183, ISSN 0010-938X
  • L. Sziráki, E. Szöcs, Zs. Pilbáth, K. Papp, E. Kálmán: Study of the initial stage of white rust formation on zinc single crystal by EIS, STM/AFM and SEM/EDS techniques. In: Electrochimica Acta 46, 2001, S. 3743, ISSN 0013-4686
  • T. Falk, J.-E. Svensson, L.-G. Johansson: The Influence of CO2 and NaCl on the Atmospheric Corrosion of Zinc. In: Journal of the Electrochemical Society 145, 1998, S. 2993, ISSN 0013-4651
  • R. Lindström, J.-E. Svensson, L.-G. Johansson: The Atmospheric Corrosion of Zinc in the Presence of NaCl. In: Journal of the Electrochemical Society 147, 2000, S. 1751, ISSN 0013-4651
  • T. Tsuru, T. Hirasaki, A. Nishikata: Corrosion Inhibition of Galvanized Steel by Corrosion Products of Zinc. In: Proceedings 15th International Corrosion Congress Granada, Sept. 2002

Einzelnachweise

  1. Feuerverzinken
  2. Wenn der Käfig den Vogel krank macht, Sendung des WRD, 16. August 2009, 18.15h
  3. Vergiftung durch Zink? NymphensittichBilderbuch.de
  4. technische Vorgaben – Technische Grundlage Einsatz von feuerverzinkten Bauteilen in Objekten und Anlagen des VBS. (PDF) Eidgenössisches Departement für Verteidigung, Bevölkerungsschutz und Sport VBS

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.